Optimization and Scale up of Microfluidic Nanolipomer Production Method for Preclinical and Potential Clinical Trials


Authors: A. Gdowski, K. Johnson, S. Shah, I. Gryczynski, J. Vishwanatha and A. Ranjan

Journal: Journal of Nanobiotechnology

DOI: 10.1186/s12951-018-0339-0

Publication - Abstract

February 12, 2018

Abstract:

The process of optimization and fabrication of nanoparticle synthesis for preclinical studies can be challenging and time consuming. Traditional small scale laboratory synthesis techniques suffer from batch to batch variability. Additionally, the parameters used in the original formulation must be re-optimized due to differences in fabrication techniques for clinical production. Several low flow microfluidic synthesis processes have been reported in recent years for developing nanoparticles that are a hybrid between polymeric nanoparticles and liposomes. However, use of high flow microfluidic synthetic techniques has not been described for this type of nanoparticle system, which we will term as nanolipomer. In this manuscript, we describe the successful optimization and functional assessment of nanolipomers fabricated using a microfluidic synthesis method under high flow parameters.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Coating graphene oxide nanoflakes with cationic lipids leads to highly homogeneous nanoparticles (GOCL NPs) with optimised physicochemical properties for gene delivery applications. In view of in vivo applications, here we use dynamic light scattering, micro-electrophoresis and o...
Read More


Publication - Abstract

Rapid Scale-up and Production of Active-loaded PEGylated Liposomes

C.B. Roces, E.C. Port, N.N. Daskalakis, J.A. Watts, J.W. Aylott, G.W. Halbert and Y. Perrie

Manufacturing of liposomal nanomedicines (e.g. Doxil®/Caelyx®) is a challenging and slow process based on multiple-vessel and batch processing techniques. As a result, the translation of these nanomedicines from bench to bedside has been limited. Microfluidic-based manufa...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.