Rapid Synthesis of a Lipocationic Polyester Library via Ring-Opening Polymerization of Functional Valerolactones for Efficacious siRNA Delivery


Authors: J. Hao, P. Kos, K. Zhou, J.B. Miller, L. Xue, Y. Yan, H. Xiong. S. Elkassih and D.J. Siegwart

Journal: Journal of the American Chemical Society

DOI: 10.1021/jacs.5b03429

Publication - Abstract

July 13, 2015

Abstract

The ability to control chemical functionality is an exciting feature of modern polymer science that enables precise design of drug delivery systems. Ring-opening polymerization of functional monomers has emerged as a versatile method to prepare clinically translatable degradable polyesters.1 A variety of functional groups have been introduced into lactones; however, the direct polymerization of tertiary amine functionalized cyclic esters has remained elusive. We report a strategy that enabled the rapid synthesis of >130 lipocationic polyesters directly from functional monomers without protecting groups. These polymers are highly effective for siRNA delivery at low doses in vitro and in vivo.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

The main objective of this work was to formulate novel amphiphilic PLGA nanoparticles with improved physicochemical properties for the delivery of the novel peptide (CK-10) to be used for targeting of the cancerous/tumour tissue. This was achieved by blending of various amphiphil...
Read More


Publication - Abstract

Niosome nanoparticles can be prepared using different methods, each of which can affect the size and homogeneity of the prepared particles. The aim of this study was to establish if the method of preparation impacted on the prepared vesicles when loaded with a model protein and t...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.