Microfluidic-Controlled Manufacture of Liposomes for the Solubilisation of a Poorly Water Soluble Drug


Authors: E. Kastner, V. Verma, D. Lowry and Y. Perrie

Journal: International Journal of Pharmaceutics

DOI: 10.1016/j.ijpharm.2015.02.063

Publication - Abstract

May 15, 2015

Abstract:

Besides their well-described use as delivery systems for water-soluble drugs, liposomes have the ability to act as a solubilizing agent for drugs with low aqueous solubility. However, a key limitation in exploiting liposome technology is the availability of scalable, low-cost production methods for the preparation of liposomes. Here we describe a new method, using microfluidic mixing, to prepare liposomal solubilizing systems which can incorporate low solubility drugs (in this case propofol). The setup, based on a chaotic advection micromixer, showed high drug loading (41 mol%) of propofol as well as the ability to manufacture vesicles with at prescribed sizes (between 50 and 450 nm) in a high-throughput setting. Our results demonstrate the ability of merging liposome manufacturing and drug encapsulation in a single process step, leading to an overall reduced process time. These studies emphasize the flexibility and ease of applying lab-on-a-chip microfluidics for the solubilization of poorly water-soluble drugs.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Microfluidics has been used to process self-assembling liposomal systems that are commonly considered for drug delivery applications. However, it has been found that the parameters of the process are not universally suited for all lipid types. We hypothesize here that size aggreg...
Read More


Publication - Abstract

The microfluidic technique has emerged as a promising tool to accelerate the clinical translation of nanoparticles, and its application affects several aspects, such as the production of nanoparticles and the in vitro characterization in the microenvironment, mimicking <...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.