Engineering, On‐demand Manufacturing, and Scaling‐up of Polymeric Nanocapsules


Authors: J. Crecente-Campo and M.J. Alonso

Journal: Bioengineering and Translational Medicine

DOI: 10.1002/btm2.10118

Publication - Abstract

September 17, 2018

Abstract

Polymeric nanocapsules are versatile delivery systems with the capacity to load lipophilic drugs in their oily nucleus and hydrophilic drugs in their polymeric shell. The objective of this work was to expand the technological possibilities to prepare customized nanocapsules. First, we adapted the solvent displacement technique to modulate the particle size of the resulting nanocapsules in the 50–500 nm range. We also produced nanosystems with a shell made of one or multiple polymer layers i.e. chitosan, dextran sulphate, hyaluronate, chondroitin sulphate, and alginate. In addition, we identified the conditions to translate the process into a miniaturized high‐throughput tailor‐made fabrication that enables massive screening of formulations. Finally, the production of the nanocapsules was scaled‐up both in a batch production, and also using microfluidics. The versatility of the properties of these nanocapsules and their fabrication technologies is expected to propel their advance from bench to clinic.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Read More


Publication - Abstract

The synthesis of Zein nanoparticles (NPs) using conventional methods, such as emulsion solvent diffusion and emulsion solvent evaporation, is often unreliable in replicating particle size and polydispersity between batch-to-batch syntheses. We have systematically examined the par...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.