Engineering, On‐demand Manufacturing, and Scaling‐up of Polymeric Nanocapsules


Authors: J. Crecente-Campo and M.J. Alonso

Journal: Bioengineering and Translational Medicine

DOI: 10.1002/btm2.10118

Publication - Abstract

September 17, 2018

Abstract

Polymeric nanocapsules are versatile delivery systems with the capacity to load lipophilic drugs in their oily nucleus and hydrophilic drugs in their polymeric shell. The objective of this work was to expand the technological possibilities to prepare customized nanocapsules. First, we adapted the solvent displacement technique to modulate the particle size of the resulting nanocapsules in the 50–500 nm range. We also produced nanosystems with a shell made of one or multiple polymer layers i.e. chitosan, dextran sulphate, hyaluronate, chondroitin sulphate, and alginate. In addition, we identified the conditions to translate the process into a miniaturized high‐throughput tailor‐made fabrication that enables massive screening of formulations. Finally, the production of the nanocapsules was scaled‐up both in a batch production, and also using microfluidics. The versatility of the properties of these nanocapsules and their fabrication technologies is expected to propel their advance from bench to clinic.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Preparation of Nanoliposomes by Microfluidic Mixing in Herring-bone Channel and the Role of Membrane Fluidity in Liposomes Formation

J. Kotouček, F. Hubatka, J. Mašek, P. Kulich, K. Velínská, J. Bezděková, M. Fojtíková, E. Bartheldyová, A. Tomečková, J. Stráská, D. Hrebík, S. Macaulay, I. Kratochvílová, M. Raška, and J. Turánek

Introduction of microfluidic mixing technique opens a new door for preparation of the liposomes and lipid-based nanoparticles by on-chip technologies that are applicable in a laboratory and industrial scale. This study demonstrates the role of phospholipid bilayer fragment as the...
Read More


Publication - Abstract

A Scalable Method for Squalenoylation and Assembly of Multifunctional 64Cu-Labeled Squalenoylated Gemcitabine Nanoparticles

S.T. Tucci, J.W. Seo, H. Kakwere, A. Kheirolomoom, E.S. Ingham, L.M. Mahakian, S. Tam, S. Tumbale, M. Baikoghli, H. Cheng and K.W. Ferrara

Squalenoylation of gemcitabine, a front-line therapy for pancreatic cancer, allows for improved cellular-level and system-wide drug delivery. The established methods to conjugate squalene to gemcitabine and to form nanoparticles (NPs) with the squalenoylated gemcitabine (SqGem) c...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.