Lipid Nanoparticle-Mediated siRNA Transfer Against PCTAIRE1/PCTK1/Cdk16 Inhibits In Vivo Cancer Growth


Authors: T. Yanagi, K. Tachikawa, R. Wilkie-Grantham, A. Hishiki, K. Nagai, E. Toyonaga, P. Chivukula and S. Matsuzawa

Journal: Molecular Therapy: Nucleic Acids

DOI: 10.1038/mtna.2016.40

Publication - Abstract

June 28, 2016

Abstract:

PCTAIRE1/CDK16/PCTK1 plays critical roles in cancer cell proliferation and antiapoptosis. To advance our previously published in vitro results with PCTAIRE1 silencing, we examined the in vivo therapeutic potential of this approach by using small interfering RNA (siRNA) encapsulated by lipid nanoparticles. Therapy experiments of PCTAIRE1 siRNA were performed using human HCT116 colorectal cancer cells and human A2058 melanoma cells. A single dose of PCTAIRE1 siRNA–lipid nanoparticles was found to be highly effective in reducing in vivo PCTAIRE1 expression for up to 4 days as assayed by immunoblotting. Therapy experiments were started 4 days after subcutaneous injection of cancer cells. Treatment with PCTAIRE1 siRNA–lipid nanoparticles (0.5 mg/kg RNA, twice a week) reduced tumor volume and weight significantly compared with the scramble-control group. Histopathological analysis (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) showed increased apoptosis of tumor cells treated with PCTAIRE1-siRNA. Overall, our results demonstrate that siRNA treatment targeting PCTAIRE1 is effective in vivo, suggesting that PCTAIRE1 siRNA–lipid nanoparticles might be a novel therapeutic approach against cancer cells.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Summary

Microfluidic manufacturing of surface-functionalized graphene oxide nanoflakes for gene delivery

R. Di Santo, L. Digiacomo, S. Palchetti, V. Palmieri, G. Perini, D. Pozzi, M. Papi and G. Caracciolo

Scientists at Sapienza University in Rome report using the NanoAssemblr Benchtop to make Graphene oxide/Cationic lipid (GOCL) hybrid particles for gene delivery. They compared plasmid delivery to standard DOTAP lipoplexes in HEK and HeLa cells and found that transfection efficien...
Read More


Publication - Summary

To date, most neurodegenerative disorders remain difficult to treat since neither traditional pharmaceutical nor surgical interventions have proven effective for these diseases. Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS...

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.