Comparing Microfluidics and Ultrasonication as Formulation Methods for Developing Hempseed Oil Nanoemulsions for Oral Delivery Applications

Authors: F. Fathordoobady, N. Sannikova, Y. Guo, A. Singh, D.D. Kitts and A. Pratap-Singh

Journal: Scientific Reports

DOI: 10.1038/s41598-020-79161-w

Publication - Abstract

January 08, 2021


Emerging formulation technologies aimed to produce nanoemulsions with improved characteristics, such as stability are attractive endeavors; however, comparisons between competing technologies are lacking. In this study, two formulation techniques that employed ultrasound and microfluidic approaches, respectively, were examined for relative capacity to produce serviceable oil in water nanoemulsions, based on hempseed oil (HSO). The ultrasound method reached > 99.5% entrapment efficiency with nanoemulsions that had an average droplet size (Z-Ave) < 180 nm and polydispersity index (PDI) of 0.15 ± 0.04. Surfactant concentration (% w/v) was found to be a significant factor (p < 0.05) controlling the Z-Ave, PDI and zeta potential of these nanoparticles. On the other hand, the microfluidic approach produced smaller particles compared to ultrasonication, with good stability observed during storage at room temperature. The Z-Ave of < 62.0 nm was achieved for microfluidic nanoemulsions by adjusting the aqueous : organic flow rate ratio and total flow rate at 4:1 and 12 mL/min, respectively. Further analyses including a morphology examination, a simulated gastrointestinal release behavior study, transepithelial transport evaluations and a toxicity test, using a Caco2-cell model, were performed to assess the functionality of the prepared formulations. The results of this study conclude that both approaches of ultrasound and microfluidics have the capability to prepare an HSO-nanoemulsion formulation, with acceptable characteristics and stability for oral delivery applications.

Advanced Search

  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads

related content

Publication - Abstract

Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model

Y. Zhang, H. Tan, J.D. Daniels, F. Zandkarimi, H. Liu, L.M. Brown, K. Uchida, O.A. O'Connor and B.R. Stockwell

Brent Stockwell’s lab at Columbia University demonstrated the efficacy of a small molecule encapsulated in a PEG-PLGA nanoparticle for inducing a form of cell death called ferroptosis (discovered by the Stockwell Lab) in diffuse large B cell lymphoma (DLBCL) mouse models...

Read More

Publication - Abstract

The approval of two mRNA vaccines as urgent prophylactic treatments against Covid-19 made them a realistic alternative to conventional vaccination methods. However, naked mRNA is rapidly degraded by the body and cannot effectively penetrate cells. Vectors capable of addressing th...
Read More

Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.