Translating the Fabrication of Protein-loaded Poly(lactic-co-glycolic acid) Nanoparticles from Bench to Scale-independent Production Using Microfluidics


Authors: C.B. Roces, D. Christensen and Y. Perrie

Journal: Drug Delivery and Translational Research

DOI: 10.1007/s13346-019-00699-y

Publication - Abstract

January 09, 2020

Abstract

In the formulation of nanoparticles, poly(lactic-co-glycolic acid) (PLGA) is commonly employed due to its Food and Drug Administration and European Medicines Agency approval for human use, its ability to encapsulate a variety of moieties, its biocompatibility and biodegradability and its ability to offer a range of controlled release profiles. Common methods for the production of PLGA particles often adopt harsh solvents, surfactants/stabilisers and in general are multi-step and time-consuming processes. This limits the translation of these drug delivery systems from bench to bedside. To address this, we have applied microfluidic processes to develop a scale-independent platform for the manufacture, purification and monitoring of nanoparticles. Thereby, the influence of various microfluidic parameters on the physicochemical characteristics of the empty and the protein-loaded PLGA particles was evaluated in combination with the copolymer employed (PLGA 85:15, 75:25 or 50:50) and the type of protein loaded. Using this rapid production process, emulsifying/stabilising agents (such as polyvinyl alcohol) are not required. We also incorporate in-line purification systems and at-line particle size monitoring. Our results demonstrate the microfluidic control parameters that can be adopted to control particle size and the impact of PLGA copolymer type on the characteristics of the produced particles. With these nanoparticles, protein encapsulation efficiency varies from 8 to 50% and is controlled by the copolymer of choice and the production parameters employed; higher flow rates, combined with medium flow rate ratios (3:1), should be adopted to promote higher protein loading (% wt/wt). In conclusion, herein, we outline the process controls for the fabrication of PLGA polymeric nanoparticles incorporating proteins in a rapid and scalable manufacturing process.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

A key challenge in manufacturing of multicomponent polymeric colloids is obtaining monodisperse nanoparticles (NPs) with reproducible characteristics. Herein, NP formulations with varying core to shell ratios were either prepared by bulk nanoprecipitation or microfluidic synthesi...
Read More


Publication - Abstract

Powassan virus (POWV) is an emerging tick-transmitted flavivirus that circulates in North America and Russia. Up to 5% of deer ticks now test positive for POWV in certain regions of the northern United States. Although POWV infections cause life-threatening encephalitis, there is...
Read More


Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.

MENU
菜单
X
X