Properties of Liposomes Containing Natural and Synthetic Lipids Formed by Microfluidic Mixing


Authors: Mengxiu Zheng, Thomas M. Fyles

Journal: European Journal of Lipid Science and Technology

DOI: 10.1002/ejlt.201700347

Publication - Abstract

January 11, 2018

Abstract:

Vesicle formation by a staggered herringbone microfluidic mixer was investigated in comparison to a sonication-extrusion method. Experiments focused on the incorporation efficiency of lipid components, on dye entrapment efficiency, and on the barrier properties of the vesicle bilayers produced. The microfluidic method produces vesicles largely under the control of thermodynamic factors. As a result, the molecular parameters of the lipids(chain length, chain volume, head group area) directly control vesicle diameter. A hydrophobic branched chain sulfonate lipid was incorporated by microfluidic mixing but not by sonication-extrusion. The vesicles produced by microfluidic mixing can be used to study ion transport by known ionophores and appear to have directly comparable barrier properties to those produced by sonication-extrusion. Vesicles containing the branched chain sulfonate are highly permeable. The microfluidic mixing method produces predominantly unilamellar vesicles.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Understanding the effect of liposome size on tendency for accumulation in tumor tissue requires preparation of defined populations of different sized particles. However, controlling the size distributions without changing the lipid composition is d...

Read More


Publication - Abstract

The process of optimization and fabrication of nanoparticle synthesis for preclinical studies can be challenging and time consuming. Traditional small scale laboratory synthesis techniques suffer from batch to batch variability. Additionally, the p...

Read More


Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.

MENU
X