The Effects of Hydration Media on the Characteristics of Non-Ionic Surfactant Vesicles (NISV) Prepared by Microfluidics


Authors: M.Obeid, I. Khadraa, A. Mullena, R. Tatea, V. Ferroa

Journal: International Journal of Pharmaceutics

DOI: 10.1016/j.ijpharm.2016.11.015

Publication - Abstract

November 09, 2016

Abstract:


Non-ionic surfactant vesicles (NISV) are colloidal particles that provide a useful delivery system for drugs and vaccines. One of the methods that is used for NISV preparation is microfluidics in which the lipid components dissolved in organic phase are mixed with an aqueous medium to prepare the particles through self-assembly of the lipids. In this work, we examined the effect of using different types of aqueous media on the characteristics of the NISV prepared by microfluidics. Five aqueous media were tested: phosphate buffered saline, HEPES buffer, Tris buffer, normal saline and distilled water. The resulting particles were tested for their physical characteristics and cytotoxicity. The aqueous media were found to have significant effects on the physical characteristics of the particles, as well as their overall stability under different conditions and their cytotoxicity to different human cell lines. Careful consideration should be taken when choosing the aqueous media for preparing NISV through microfluidics. This is an important factor that will also have implications with respect to the entrapped material, but which in addition may help to design vesicles for different uses based on changing the preparation medium.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Summary

The potency of drug delivery systems can heavily rely on their ability to penetrate poorly vascularized tissues such as tumors, following intravenous administration. The drug delivery vehicle’s size greatly impacts this phenomenon.

Read More


Publication - Abstract

Previous studies from this group have shown that limit size lipid-based systems – defined as the smallest achievable aggregates compatible with the packing properties of their molecular constituents – can be efficiently produced using a...

Read More


Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.

MENU
X