Microfluidic-directed Self-assembly of Liposomes: Role of Interdigitation


Authors: S.W.Z. Lim, Y.S. Wong, B. Czarny and S. Venkatraman

Journal: Journal of Colloid and Interface Science

DOI: 10.1016/j.jcis.2020.05.114

Publication - Abstract

June 15, 2020

Microfluidics has been used to process self-assembling liposomal systems that are commonly considered for drug delivery applications. However, it has been found that the parameters of the process are not universally suited for all lipid types. We hypothesize here that size aggregation and instability of microfluidic liposomes are a direct consequence of the presence of interdigitation in these liposomes. Interdigitation refers to the phenomenon where two opposing leaflets of a bilayer interpenetrate into one another and form a single layer. When this happens, aggregation results as the single layer is not thermodynamically stable. Such interdigitation can be induced by pressure, chemicals or by the type of lipid structure. In this study, we systematically investigate the role of lipid composition on membrane interdigitation in order to understand the dependency of lipid interdigitation on liposome formation by microfluidics. By doing so, we use nano DSC and SAXS to probe the extent of lipid interdigitation by measuring the changes in thermodynamics and membrane thickness of the lipid bilayers. Our results show that microfluidic-fabricated liposomes undergo chemical interdigitation in the presence of ethanol, in particular saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Strategies to prevent interdigitation is to either remove ethanol above the lipid’s main transition temperature Tm preventing the formation of interdigitated structures and subsequent aggregated states or by the incorporation of the inhibiting additives, such as cholesterol.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Using Microfluidics for Scalable Manufacturing of Nanomedicines from Bench to GMP: A Case Study Using Protein-loaded Liposomes

C. Webb, N. Forbes, C.B. Roces, G. Anderluzzi, G. Lou, S. Abraham, L. Ingalls, K. Marshall, T.J. Leaver, J.A. Watts, J.W. Aylott, and Y. Perrie

Nanomedicines are well recognised for their ability to improve therapeutic outcomes. Yet, due to their complexity, nanomedicines are challenging and costly to produce using traditional manufacturing methods. For nanomedicines to be widely exploited, new manufacturing technologies...
Read More


Publication - Abstract

Liposomes have attracted much attention as the first nanoformulations entering the clinic. The optimization of physicochemical properties of liposomes during nanomedicine development however is time-consuming and challenging despite great advances in formulation development. Here...
Read More


Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.

MENU
菜单
X
X