Biodegradable Amino-ester Nanomaterials for Cas9 mRNA Delivery in Vitro and in Vivo


Authors: X. Zhang, B. Li, X. Luo, W. Zhao, J. Jiang, C. Zhang, M. Gao, X. Chen and Y. Dong

Journal: ACS Applied Materials & Interfaces

DOI: 10.1021/acsami.7b08163

Publication - Abstract

July 07, 2017

Abstract:

Efficient and safe delivery of the CRISPR/Cas system is one of the key challenges for genome-editing applications in humans. Herein, we designed and synthesized a series of biodegradable lipidlike compounds containing ester groups for the delivery of mRNA-encoding Cas9. Two lead materials, termed N-methyl-1,3-propanediamine (MPA)-A and MPA-Ab, showed a tunable rate of biodegradation. MPA-A with linear ester chains was degraded dramatically faster than MPA-Ab with branched ester chains in the presence of esterase or in wild-type mice. Most importantly, MPA-A and MPA-Ab demonstrated efficient delivery of Cas9 mRNA both in vitro and in vivo. Consequently, these biodegradable lipidlike nanomaterials merit further development as genome-editing delivery tools for biological and therapeutic 

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Summary

Systemic Delivery of Factor IX Messenger RNA for Protein Replacement Therapy

S. Ramaswamy, N. Tonnu, K. Tachikawa, P. Limphong, J.B. Vega, P.P. Karmali, P. Chivukula, and I.M. Verma

Like most genetic disorders, Hemophilia B is caused by a mutation that leads to a dysfunctional protein. Hemophilia B patients are susceptible to life threatening bleeds when injured due to a clotting defect caused by a mutated coagulation fac...

Read More


Publication - Abstract

Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for in Vivo Delivery of siRNA

N.M. Belliveau, J. Huft, P.J. Lin, S. Chen, A.K. Leung, T.J. Leaver, A.W. Wild, J.B. Lee, R.J. Taylor, Y.K. Tam, C.L. Hansen, and P.R. Cullis

Lipid nanoparticles (LNP) are the leading systems for in vivo delivery of small interfering RNA (siRNA) for therapeutic applications.

Read More


Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.

MENU
菜单
X
X