The Promise of mRNA Vaccines: A Biotech and Industrial Perspective


Authors: N.A.C Jackson, K.E. Kester, D. Casimiro, S. Gurunathan and F. DeRosa

Journal: npj Vaccines

DOI: 10.1038/s41541-020-0159-8

Publication - Abstract

February 04, 2020

Abstract

mRNA technologies have the potential to transform areas of medicine, including the prophylaxis of infectious diseases. The advantages for vaccines range from the acceleration of immunogen discovery to rapid response and multiple disease target manufacturing. A greater understanding of quality attributes that dictate translation efficiency, as well as a comprehensive appreciation of the importance of mRNA delivery, are influencing a new era of investment in development activities. The application of translational sciences and growing early-phase clinical experience continue to inform candidate vaccine selection. Here we review the state of the art for the prevention of infectious diseases by using mRNA and pertinent topics to the biotechnology and pharmaceutical industries.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

The lymphatics are a target for a range of therapeutic purposes, including cancer therapy and vaccination and both vesicle size and charge have been considered as factors controlling lymphatic targeting. Within this work, a range...

Read More


Publication - Summary

A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing

J. Finn, A. Smith, M. Patel, L. Shaw, M. Youniss, J. Heteren, T. Dirstine, C. Ciullo, R. Lescarbeau, J. Seitzer, R. Shah, A. Shah, D. Ling, J. Growe, M. Pink, E. Rohde, K. Wood, W. Salomon, W. Harrington, C. Dombrowski, W. Strapps, Y. Chang, D. Morrissey

Hereditary transthryretin amyloidosis is a rare disease caused by mutations in the gene encoding the protein transthyretin (TTR), causing it to misfold into amyloid plaques, leading to debilitating symptoms. In 2018,...

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.