Microfluidic-Based Manufacture of siRNA-Lipid Nanoparticles for Therapeutic Applications


Authors: C. Walsh, K. Ou, N.M. Belliveau, T.J. Leaver, A.W. Wild, J. Huft, P.J. Lin, S. Chen, A.K. Leung, J.B. Lee, C.L. Hansen, R.J. Taylor, E.C. Ramsay and P.R Cullis

Journal: Methods in Molecular Biology

DOI: 10.1007/978-1-4939-0363-4_6

Publication - Abstract

February 03, 2014

Abstract:

A simple, efficient, and scalable manufacturing technique is required for developing siRNA-lipid nanoparticles (siRNA-LNP) for therapeutic applications. In this chapter we describe a novel microfluidic-based manufacturing process for the rapid manufacture of siRNA-LNP, together with protocols for characterizing the size, polydispersity, RNA encapsulation efficiency, RNA concentration, and total lipid concentration of the resultant nanoparticles.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Mastering the Tools: Natural versus Artificial Vesicles in Nanomedicine

L. Leggio, G. Arrabito, V. Ferrara, S. Vivarelli, G. Paterno, B. Marchetti, B. Pignataro and N. Iraci

Read More


Publication - Abstract

Here, we show how dynamic nuclear polarization (DNP) NMR spectroscopy experiments permit the atomic level structural characterization of loaded and empty lipid nanoparticles (LNPs). The LNPs used here were synthesized by the microfluidic mixing tec...

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.