GLUT3 is Present in Clone 9 Liver Cells and Translocates to the Plasma Membrane in Response to Insulin


Authors: D.M. Defries, C.G. Taylor and P. Zahradka

Journal: Biochemical and Biophysical Research Communications

DOI: 10.1016/j.bbrc.2016.06.081.

Publication - Abstract

August 26, 2016

Abstract:

Clone 9 cells have been reported to express only the GLUT1 facilitative glucose transporter; however, previous studies have not examined Clone 9cells for GLUT3 content. The current study sought to profile the presence of glucose transporters in Clone 9 cells, H4IIE hepatoma cells, and L6 myoblasts and myotubes. While the other cell types contained the expected complement of transporters, Clone 9 cells had GLUT3 which was previously not reported. Interestingly, both GLUT3 mRNA and protein were detected in Clone 9 cells, but only mRNA for GLUT1 was detected. Glucose transport in Clone 9 cells was insulin-sensitive in a concentration-dependent manner, concomitant with the presence of GLUT3 in the plasma membrane after insulin treatment. Although basal glucose uptake was unaffected, insulin-stimulated glucose uptake was abolished with siRNA-mediated GLUT3 knockdown. These results contradict previous reports that Clone 9 cells exclusively express GLUT1 and suggest GLUT3is a key insulin-sensitive glucose transporter required for insulin-stimulated glucose uptake by Clone 9 cells.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

The clinical translation of messengerRNA (mRNA) drugs has been slowed by a shortage of delivery vehicles that potently and safely shuttle mRNA into target cells. Here, we describe the properties of a particularly potent branched-tail lipid nanoparticle that delivers mRNA to >8...
Read More


Publication - Abstract

Therapeutic Shutdown of HBV Transcripts Promotes Reappearance of the SMC5/6 Complex and Silencing of the Viral genome In Vivo

L. Allweiss, K. Giersch, A. Pirosu, T. Volz, R.C. Muench, R.K. Beran, S. Urban, H. Javanbakht, S.P. Fletcher, M. Lütgehetmann and M. Dandri

These results reveal that therapeutics abrogating all HBV transcripts including HBx promote epigenetic suppression of the HBV minichromosome, whereas strategies protecting the human hepatocytes from reinfection are needed to maintain cccDNA silencing.
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.