Engineering Caveolae-Targeted Lipid Nanoparticles To Deliver mRNA to the Lungs


Authors: Q. Li, C. Chan, N. Peterson, R.N. Hanna, A. Alfaro, K.L. Allen, H. Wu, W.F. Dall'Acqua, M.J. Borrok and J.L. Santos

Journal: ACS Chemical Biology

DOI: 10.1021/acschembio.0c00003

Publication - Abstract

March 10, 2020

Abstract

Efficacious use of therapeutic gene delivery via nanoparticles is hampered by the challenges associated with targeted delivery to tissues of interest. Systemic administration of lipid nanoparticle (LNP)-encapsulated mRNA leads to a protein expressed predominantly in the liver and spleen. Here, LNP encapsulating mRNA was covalently conjugated to an antibody, specifically binding plasmalemma vesicle-associated protein (PV1) as a means to target lung tissue. Systemic administration of PV1-targeted LNPs demonstrated significantly increased delivery of mRNA to the lungs and a 40-fold improvement in protein expression in the lungs, compared with control LNPs. We also investigated the effect of LNP size to determine optimal tissue distribution and transfection. Larger-size PV1-targeted LNPs not only have the elasticity to target the PV1 expressed in the caveolae but also enable robust mRNA expression in the lungs. Targeted delivery of mRNA to the lungs is a promising approach in the treatment of lung diseases.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

A pH-sensitive molecular switch able to change its conformation upon protonation at endosomal pH values is embedded into the structure of cationic lipidoid materials, thus conferring endosomal escape properties. Involvement of the conformational switch in the endosomal escape pro...
Read More


Publication - Abstract

The Self-Assembled Nanoparticle-Based Trimeric RBD mRNA Vaccine Elicits Robust and Durable Protective Immunity Against SARS-CoV-2 in Mice

W. Sun, L. He, H. Zhang, X. Tian, Z. Bai, L. Sun, L. Yang, X. Jia, Y. Bi, T. Luo, G. Cheng, W. Fan, W. Liu & J. Li

In a publication written by scientists, Sun et al. 2021, from the CAS Key Laboratory of Pathogenic Microbiology and Immunology at the Chinese Academy of Sciences, endeavored to develop a broad-spectrum multivalent vaccine to combat rapidly emerging variants of SARS-CoV-2. Their a...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.