Rapamycin-Loaded Biomimetic Nanoparticles Reverse Vascular Inflammation


Authors: C. Boada, A. Zinger, C. Tsao, P. Zhao, J.O. Martinez, K. Hartman, T. Naoi, R. Sukhoveshin, M. Sushnitha, R. Molinaro, B. Trachtenberg, J.P. Cooke, and E. Tasciotti

Journal: Circulation Research

DOI: 10.1161/CIRCRESAHA.119.315185

Publication - Abstract

October 24, 2019

Abstract

Rationale:

Through localized delivery of rapamycin via a biomimetic drug delivery system, it is possible to reduce vascular inflammation and thus the progression of vascular disease.

Objective:

Use biomimetic nanoparticles to deliver rapamycin to the vessel wall to reduce inflammation in an in vivo model of atherosclerosis after a short dosing schedule.

Methods and Results:

Biomimetic nanoparticles (leukosomes) were synthesized using membrane proteins purified from activated J774 macrophages. Rapamycin-loaded nanoparticles were characterized using dynamic light scattering and were found to have a diameter of 108±2.3 nm, a surface charge of −15.4±14.4 mV, and a polydispersity index of 0.11 +/ 0.2. For in vivo studies, ApoE−/− mice were fed a high-fat diet for 12 weeks. Mice were injected with either PBS, free rapamycin (5 mg/kg), or rapamycin-loaded leukosomes (Leuko-Rapa; 5 mg/kg) once daily for 7 days. In mice treated with Leuko-Rapa, flow cytometry of disaggregated aortic tissue revealed fewer proliferating macrophages in the aorta (15.6±9.79 %) compared with untreated mice (30.2±13.34 %) and rapamycin alone (26.8±9.87 %). Decreased macrophage proliferation correlated with decreased levels of MCP (monocyte chemoattractant protein)-1 and IL (interleukin)-b1 in mice treated with Leuko-Rapa. Furthermore, Leuko-Rapa–treated mice also displayed significantly decreased MMP (matrix metalloproteinases) activity in the aorta (mean difference 2554±363.9, P=9.95122×10−6). No significant changes in metabolic or inflammation markers observed in liver metabolic assays. Histological analysis showed improvements in lung morphology, with no alterations in heart, spleen, lung, or liver in Leuko-Rapa–treated mice.

Conclusions:

We showed that our biomimetic nanoparticles showed a decrease in proliferating macrophage population that was accompanied by the reduction of key proinflammatory cytokines and changes in plaque morphology. This proof-of-concept showed that our platform was capable of suppressing macrophage proliferation within the aorta after a short dosing schedule (7 days) and with a favorable toxicity profile. This treatment could be a promising intervention for the acute stabilization of late-stage plaques.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Read More


Publication - Abstract

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.