Microfluidic Manufacturing of Phospholipid Nanoparticles: Stability, Encapsulation Efficacy, and Drug Release


Authors: M.G. Correia, M.L. Briuglia, F. Niosi and D.A. Lamprou

Journal: International Journal of Pharmaceutics

DOI: 10.1016/j.ijpharm.2016.11.025

Publication - Abstract

November 10, 2016

Abstract:

Liposomes have been the centre of attention in research due to their potential to act as drug delivery systems. Although its versatility and manufacturing processes are still not scalable and reproducible. In this study, the microfluidic mixing method for liposomes preparation is presented. DMPC and DSPC liposomes containing two different lipid/cholesterol ratios (1:1 and 2:1) are prepared. Results from this preparation process were compared with the film hydration method in order to understand benefits and drawbacks of microfluidics. Liposomes characterization was evaluated through stability studies, encapsulation efficacy and drug release profiles of hydrophilic and lipophilic compounds. Stability tests were performed during 3 weeks and the liposomes properties of the most stable formulations were determined using Infrared Microscopy and Atomic Force Microscopy. Microfluidic allows loading of drugs and assembly in a quick single step and the chosen flow ratio for liposomes formulation plays a fundamental role for particle sizes. One hydrophilic and one lipophilic compounds were incorporated showing how formulation and physic-chemical characteristics can influence the drug release profile.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Classified as a Biopharmaceutical Classification System (BCS) class IV drug, amphotericin B (AmB) has low aqueous solubility and low permeability leading to low oral bioavailability. To improve these limitations, this study investigated the potential of AmB-loaded polymeric micel...
Read More


Publication - Abstract

Besides their well-described use as delivery systems for water-soluble drugs, liposomes have the ability to act as a solubilizing agent for drugs with low aqueous solubility. However, a key limitation in exploiting liposome technology is ...

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.