Modification of Adenosine196 by Mettl3 Methyltransferase in the 5’-External Transcribed Spacer of 47S Pre-rRNA Affects rRNA Maturation


Authors: O. Sergeeva, P. Sergeev, P. Melnikov, T. Prikazchikova, O. Dontsova and T. Zatsepin

Journal: Cells

DOI: 10.3390/cells9041061

Publication - Abstract

April 24, 2020

Abstract

Ribosome biogenesis is among the founding processes in the cell. During the first stages of ribosome biogenesis, polycistronic precursor of ribosomal RNA passes complex multistage maturation after transcription. Quality control of preribosomal RNA (pre-rRNA) processing is precisely regulated by non-ribosomal proteins and structural features of pre-rRNA molecules, including modified nucleotides. However, many participants of rRNA maturation are still unknown or poorly characterized. We report that RNA m6A methyltransferase Mettl3 interacts with the 5′ external transcribed spacer (5′ETS) of the 47S rRNA precursor and modifies adenosine 196. We demonstrated that Mettl3 knockdown results in the increase of pre-rRNA processing rates, while intracellular amounts of rRNA processing machinery components (U3, U8, U13, U14, and U17 small nucleolar RNA (snoRNA)and fibrillarin, nucleolin, Xrn2, and rrp9 proteins), rRNA degradation rates, and total amount of mature rRNA in the cell stay unchanged. Increased efficacy of pre-rRNA cleavage at A’ and A0 positions led to the decrease of 47S and 45S pre-rRNAs in the cell and increase of mature rRNA amount in the cytoplasm. The newly identified conserved motif DRACH sequence modified by Mettl3 in the 5′-ETS region is found and conserved only in primates, which may suggest participation of m6A196 in quality control of pre-rRNA processing at initial stages demanded by increased complexity of ribosome biogenesis.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Delivery of Self-amplifying mRNA Vaccines by Cationic Lipid Nanoparticles: The Impact of Cationic Lipid Selection

G. Lou, G. Anderluzzi, S.T. Schmidt, S. Woods, S. Gallorini, M. Brazzoli, F. Giusti, I. Ferlenghi, R. Johnson, C.W. Roberts, D.T. O'Hagan, B.C. Baudner and Y. Perrie

Self-amplifying RNA (SAM) represents a versatile tool that can be used to develop potent vaccines, potentially able to elicit strong antigen-specific humoral and cellular-mediated immune responses to virtually any infectious disease. To protect the SAM from degradation and achiev...
Read More


Publication - Abstract

Recently, mRNA-based therapeutics have been greatly boosted since the development of novel technologies of both mRNA synthesis and delivery system. Promising results were showed in both preclinical and clinical studies in the field of cancer vaccine, tumor immunotherapy, infectio...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.