Microfluidic Process Intensification for Synthesis and Formulation in the Pharmaceutical Industry


Authors: A.I. Shallan and C. Priest

Journal: Chemical Engineering and Processing - Process Intensification

DOI: 10.1016/j.cep.2019.107559

Publication - Abstract

August 31, 2020

Abstract

Process intensification has had an enormous impact on industrial strategy over the last century, with good outcomes for efficiency, safety, environment, and financial cost. Microfluidics offers a relatively new approach that has been studied for 30 years and has become a realistic tool for process intensification in important areas, including pharmaceutical industry. Drug manufacturing and development are expensive, highly regulated, and of great importance to society, due to the health care application. It is therefore a natural target for new technologies that can make pharmaceuticals simultaneously cheaper, more effective, and more accessible, without adverse impact on the environment and health of the workforce. Much work has been done, so this review will necessarily focus on improved pharmaceutical synthesis and drug delivery systems. This review also highlights examples of process intensification and future directions.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

This review will explore the four major pillars required for design and development of an saRNA vaccine: Antigen design, vector design, non-viral delivery systems, and manufacturing (both saRNA and lipid nanoparticles (LNP)). We report on the major innovations, preclinical a...
Read More


Publication - Abstract

A High-throughput Galectin-9 Imaging Assay for Quantifying Nanoparticle Uptake, Endosomal Escape and Functional RNA Delivery

M.J. Munson, G. O'Driscoll, A.M. Silva, E. Lázaro-Ibáñez, A. Gallud, J.T. Wilson, A. Collén, E.K. Esbjörner and A. Sabirsh

RNA-based therapies have great potential to treat many undruggable human diseases. However, their efficacy, in particular for mRNA, remains hampered by poor cellular delivery and limited endosomal escape. Development and optimisation of delivery vectors, such as lipid nanoparticl...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.