Microfluidic Preparation of Various Perfluorocarbon Nanodroplets: Characterization and Determination of Acoustic Droplet Vaporization (ADV) Threshold


Authors: R. Melich, P. Bussat, L. Morici, A. Vivien, E. Gaud, T. Bettinger and S. Cherkaoui

Journal: International Journal of Pharmaceutics

DOI: 10.1016/j.ijpharm.2020.119651

Publication - Abstract

September 01, 2020

Over the last two decades, liquid perfluorocarbon nanodroplets (PFC-NDs), also known as Phase Change Contrast Agents (PCCAs), that are capable of vaporizing into gaseous echogenic microbubbles via an external stimulus, have gained much attention for diagnostic and therapeutic applications. In the present work, a microfluidic platform is evaluated for the preparation of various size-controlled nanodroplets. Here, two major lines of investigations were carried out. The first was to define the microfluidic device settings for the preparation of nanodroplets depending on the nature of the encapsulating shell such as lipids, fluorinated surfactants and PLGA biopolymers as well as the liquid perfluorocarbon core (perfluoropentane, perfluorohexane). Specifically, the effect of the microfluidic system parameters, such as total flow rate and flow rate ratio on PFC-NDs attributes including size and uniformity was assessed. Secondly, a custom-made set-up, based on echogenicity signals from produced bubbles, was designed and successfully applied to determine the Acoustic Droplet Vaporization (ADV) threshold of PFC-NDs. Finally, the influence of various formulation parameters on the vaporization outcome was investigated depending on the PFC type and the encapsulating shell composition (soft versus hard shells). This study indicates the usefulness of this novel formulation platform enabling the rapid design and optimization of narrowly dispersed nanodroplets at a reliable yield and ultimately accelerate nanomedicines development.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

The ability to control chemical functionality is an exciting feature of modern polymer science that enables precise design of drug delivery systems. Ring-opening polymerization of functional monomers has emerged as a versatile method to prepare clinically translatable degradable ...
Read More


Publication - Summary

The potency of drug delivery systems can heavily rely on their ability to penetrate poorly vascularized tissues such as tumors, following intravenous administration. The drug delivery vehicle’s size greatly impacts this phenomenon.

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.