Microfluidic Assembly of Liposomes with Tunable Size and Coloading Capabilities


Authors: JR Hoffman, E Tasciotti, R Molinaro

Journal: Multiple Myeloma

DOI: 10.1007/978-1-4939-7865-6_15

Publication - Abstract

May 25, 2018

Liposomes used for the delivery of pharmaceuticals have difficulties scaling up and reaching clinical translation as they suffer from batch-to-batch variability. Here, we describe a microfluidic approach for creating reproducible, homogenous nanoparticles with tunable characteristics. These nanoparticles of sizes ranging from 30 to 500 nm are rapidly self-assembled by controlling the flow rates of ethanol and aqueous streams. This method of microfluidic assembly allows for the efficient encapsulation of both hydrophobic and hydrophilic drugs in the lipid bilayer and particle core, respectively, either separately or in combination.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Described first in the 1960s by Bangham1 and understood as a potential drug delivery system in the early 1970s,2−4 the liposome has since become integral to research and clinical applications in the field of nanomedicine.

Read More


Publication - Abstract

Systemic delivery of RNA interference (RNAi) payloads for manipulation of gene expression in lymphocytes holds a great potential as a novel therapeutic modality for hematological malignancies and autoimmune disorders. However, lymphocytes are among the most difficult cells to tra...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.