Lipid Nanoparticles for Nucleic Acid Delivery: Current Perspectives


Authors: E. Samaridou, J. Heyes and P. Lutwyche

Journal: Advanced Drug Delivery Reviews

DOI: 10.1016/j.addr.2020.06.002

Publication - Abstract

June 08, 2020

Abstract

Nucleic Acid (NA) based therapeutics are poised to disrupt modern medicine and augment traditional pharmaceutics in a meaningful way. However, a key challenge to advancing NA therapies into the clinical setting and on to the market is the safe and effective delivery to the target tissue and cell. Lipid Nanoparticles (LNP) have been extensively investigated and are currently the most advanced vector for the delivery of NA drugs, as evidenced by the approval of Onpattro for treatment of Amyloidosis in the US and EU in 2018. This article provides a comprehensive review of the state-of-the-art for LNP technology. We discuss key advances in the design and development of LNP, leading to a broad range of therapeutic applications. Finally, the current status of this technology in clinical trials and its future prospects are discussed.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Summary

Systemic Messenger RNA Therapy as a Treatment for Methylmalonic Acidemia

D. An, J.L. Schneller, A. Frassetto, S. Liang, X. Zhu, J.S. Park, M. Theisen, S.J. Hong, J. Zhou J, R. Rajendran, B. Levy, R. Howell, G. Besin, V. Presnyak, S. Sabnis, K.E. Murphy-Benenato, E.S. Kumarasinghe, T. Salerno and P.G.V. Martini PGV

Inborn errors of metabolism (IEMs) can be relatively straight forward to screen for and diagnose; these disorders however, have currently very limited options for treatment. Methylmalonic acidemia (MMA), is an IEM caused by complete or partial defi...

Read More


Publication - Abstract

Arginase I (ARG1) deficiency is an autosomal recessive urea cycle disorder, caused by deficiency of the enzyme Arginase I, resulting in accumulation of arginine in blood. Current Standard of Care (SOC) for ARG1 deficiency in patients or those having detrimental mutations of ARG1 ...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.