Cationic Switchable Lipids: pH-triggered Molecular Switch for siRNA Delivery


Authors: W. Viricel, S. Poirier, A. Mbarek, R.M. Derbali, G. Mayer and J. Leblond

Journal: Nanoscale

DOI: 10.1039/C6NR06701H

Publication - Abstract

November 21, 2016

Abstract

A pH-sensitive molecular switch able to change its conformation upon protonation at endosomal pH values is embedded into the structure of cationic lipidoid materials, thus conferring endosomal escape properties. Involvement of the conformational switch in the endosomal escape process was confirmed and leading material identified was able to induce efficient gene knockdown both in vitro and in vivo. The lipid nanoparticles reported here are promising for therapeutic applications and this work could serve as a template for future design of stimulus-responsive (ionic, redox, light) molecular switch for drug and gene delivery.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Polymer conjugation is an attractive approach for delivering insoluble and highly toxic drugs to tumors. However, most reports in the literature only disclose the optimal composition without emphasizing rational design or composition optimization t...

Read More


Publication - Abstract

Here, we show how dynamic nuclear polarization (DNP) NMR spectroscopy experiments permit the atomic level structural characterization of loaded and empty lipid nanoparticles (LNPs). The LNPs used here were synthesized by the microfluidic mixing tec...

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.