Effects of Local Structural Transformation of Lipid-Like Compounds on Delivery of Messenger RNA


Authors: Li B, Luo X, Deng B, Giancola JB, McComb DW, Schmittgen TD, Dong Y

Journal: Sci Rep

DOI: 10.1038/srep22137

Publication - Abstract

February 26, 2016

Abstract:

Lipid-like nanoparticles (LLNs) have shown great potential for RNA delivery. Lipid-like compounds are key components in LLNs. In this study, we investigated the effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Our results showed that position change of functional groups on lipid-like compounds can dramatically improve delivery efficiency. We then optimized formulation ratios of TNT-b10 LLNs, a lead material, increasing delivery efficiency over 2-fold. More importantly, pegylated TNT-b10 LLNs is stable for over four weeks and is over 10-fold more efficient than that of its counterpart TNT-a10 LLNs. Additionally, the optimal formulation O-TNT-b10 LLNs is capable of delivering mRNA encoding luciferase in vivo. These results provide useful insights into the design of next generation LLNs for mRNA delivery.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Previous work has shown that lipid nanoparticles (LNP) composed of an ionizable cationic lipid, a poly(ethylene glycol) (PEG)lipid, distearoylphosphatidylcholine (DSPC), cholesterol, and small interfering RNA (siRNA) can be efficient...

Read More


Publication - Summary

Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease

Richner JM, Jagger BW, Shan C, Fontes CR, Dowd KA, Cao B, Himansu S, Caine EA, Nunes BT, Medeiros DB, Muruato AE

Lately there has been intense effort to develop vaccines for Zika virus, in part due to the recently established link between Zika infection and congenital birth defects such as microcephaly and the rapid spread of Zika in Oceania and the Americas ...

Read More


Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.

MENU
X