Microfluidic Assembly of Liposomes with Tunable Size and Coloading Capabilities


Authors: JR Hoffman, E Tasciotti, R Molinaro

Journal: Multiple Myeloma

DOI:

Publication - Abstract

May 25, 2018

Liposomes used for the delivery of pharmaceuticals have difficulties scaling up and reaching clinical translation as they suffer from batch-to-batch variability. Here, we describe a microfluidic approach for creating reproducible, homogenous nanoparticles with tunable characteristics. These nanoparticles of sizes ranging from 30 to 500 nm are rapidly self-assembled by controlling the flow rates of ethanol and aqueous streams. This method of microfluidic assembly allows for the efficient encapsulation of both hydrophobic and hydrophilic drugs in the lipid bilayer and particle core, respectively, either separately or in combination.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Sclerostin is a protein secreted by osteocytes that is encoded by the SOSTgene; it decreases bone formation by reducing osteoblast differentiation through inhibition of the Wnt signaling pathway.

Read More


Publication - Abstract

Changes in the Synaptic Proteome in Tauopathy and Rescue of Tau-Induced Synapse Loss by C1q Antibodies

Dejanovic, B., Huntley, M. A., De Mazière, A., Meilandt, W. J., Wu, T., Srinivasan, K., . . . Sheng, M.

Synapse loss and Tau pathology are hallmarks of Alzheimer’s disease (AD) and other tauopathies, but how Tau pathology causes synapse loss is unclear. We used unbiased proteomic analysis of postsynaptic densities (PSDs) in Tau-P301S transgenic mice to identify Tau-dependent ...
Read More


Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.

MENU
X