New Developments in Liposomal Drug Delivery


Authors: B.S. Pattni, V.V. Chupin and V.P. Torchilin

Journal: Chemical Reviews

DOI: 10.1021/acs.chemrev.5b00046

Publication - Abstract

October 14, 2015

Abstract:


Described first in the 1960s by Bangham1 and understood as a potential drug delivery system in the early 1970s,2−4 the liposome has since become integral to research and clinical applications in the field of nanomedicine. Five decades of research in the field of liposome research have shown their prospective benefits in the medical and cosmetic5−7 as well as the food industry.8,9 Several promising small molecule drugs and genes previously deemed less than useful due to problems of stability, solubility, and nonspecific toxicity can now be delivered to the intended sites of action with the help of nanocarriers like micelles, nanoparticles, and liposomes.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Summary

Zebrafish as a Predictive Screening Model to Assess Macrophage Clearance of Liposomes In Vivo

S. Sieber, P. Grossen, P. Uhl, P. Detampel, W. Mier, D. Witzigmann, J. Huwyler

The Witzigmann and Huwyler labs at the University of Basel examined the in vivo clearance of previously approved liposome formulations in zebrafish embryos and rats to demonstrate that zebrafish embryos provide similar results while being are a cheaper and faster to stud...
Read More


Publication - Abstract

Macrophage hyperfunction or dysfunction is tightly associated with various diseases, such as osteoporosis, inflammatory disorder, and cancers. However, nearly all conventional drug delivery system (DDS) nanocarriers utilize endocytosis for ent...

Read More


Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.

MENU
菜单
X
X