Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques


Authors: Liang F, Lindgren G, Lin A, Thompson EA, Ols S, Röhss J, John S, Hassett K, Yuzhakov O,Bahl K, Briton LA, Salter H, Ciaramella G, Loré k

Journal: Molecular Therpay

DOI: 10.1016/j.ymthe.2017.08.006

Publication - Abstract

December 06, 2017

Abstract:


mRNA vaccines are rapidly emerging as a powerful platform for infectious diseases because they are well tolerated, immunogenic, and scalable and are built on precise but adaptable antigen design. We show that two immunizations of modified non-replicating mRNA encoding influenza H10 hemagglutinin (HA) and encapsulated in lipid nanoparticles (LNP) induce protective HA inhibition titers and H10-specific CD4+ T cell responses after intramuscular or intradermal delivery in rhesus macaques. Administration of LNP/mRNA induced rapid and local infiltration of neutrophils, monocytes, and dendritic cells (DCs) to the site of administration and the draining lymph nodes (LNs). While these cells efficiently internalized LNP, mainly monocytes and DCs translated the mRNA and upregulated key co-stimulatory receptors (CD80 and CD86). This coincided with upregulation of type I IFN-inducible genes, including MX1 and CXCL10. The innate immune activation was transient and resulted in priming of H10-specific CD4+ T cells exclusively in the vaccine-draining LNs. Collectively, this demonstrates that mRNA-based vaccines induce type-I IFN-polarized innate immunity and, when combined with antigen production by antigen-presenting cells, lead to generation of potent vaccine-specific responses.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Lipid Nanoparticle-Mediated siRNA Transfer Against PCTAIRE1/PCTK1/Cdk16 Inhibits In Vivo Cancer Growth

Yanagi T, Tachikawa K, Wilkie-Grantham R, Hishiki A, Nagai K, Toyonaga E, Chivukula P, Matsuzawa S

PCTAIRE1/CDK16/PCTK1 plays critical roles in cancer cell proliferation and antiapoptosis. To advance our previously published in vitro results with PCTAIRE1 silencing, we examined the in vivo therapeutic potential...

Read More


Publication - Abstract

RNA Interference Efficiently Targets Human Leukemia Driven by a Fusion Oncogene in Vivo

Jyotsana N, Sharma A, Chaturvedi A, Scherr M, Kuchenbauer F, Sajti L, Barchanski A, Lindner R, Noyan F, Sühs KW, Grote-Koska D, Brand K, Vornlocher HP, Stanulla M, Bornhauser B, Bourquin , Eder M, Thol F, Ganser A, Humphries RK, Ramsay E, Cullis P, Heuser

Despite the wide therapeutic potential of RNA interference (RNAi), clinical progress has been slow with only a few examples of successful translation. Efficient knockdown of hepatic transthyretin (87%) in patients with transthyretin amyloidosis las...

Read More


Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.

MENU
X