A Novel Microfluidic-based Approach to Formulate Size-tuneable Large Unilamellar Cationic Liposomes: Formulation, Cellular Uptake and Biodistribution Investigations


Authors: G. Lou, G. Anderluzzi, S. Woods, C.W. Roberts, and Y. Perrie

Journal: European Journal of Pharmaceutics and Biopharmaceutics

DOI: 10.1016/j.ejpb.2019.08.013

Publication - Abstract

October 30, 2019

Abstract

Extensive research has been undertaken to investigate the effect of liposome size in vitro and in vivo. However, it is often difficult to generate liposomes in different size ranges that offer similar low polydispersity and lamellarity. Conventional methods used in the preparation of liposomes, such as lipid film hydration or reverse phase evaporation, generally give rise to liposomal suspensions displaying broad, multimodal size distribution combined with uncontrolled degree of lamellarity. In contrast, microfluidics allows highly homogeneous liposome dispersions to be produced and adjustment of microfluidic operating parameters (flow rate ratio (FRR) and total flow rate (TFR)) can offer size-tuning of liposomes (up to 300 nm, depending on the formulation). Herein, we demonstrate a novel method which allows the production of highly monodisperse, cationic liposomes over a wide particle size range (up to 750 nm in size). This is achieved through controlling the concentration of the aqueous buffer during production. Using this method, liposomes composed of 1,2-dioleoyl-sn-3-phosphoethanolamine (DOPE) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or dimethyldioctadecylammonium (DDA) – DOPE:DOTAP and DOPE:DDA liposomes – of up to 750 nm were prepared and investigated. These investigations demonstrate that the in vitro cellular uptake of small (40 nm) and large (>500 nm) liposomes in bone marrow-derived macrophages (BMDM) is similar terms of percentage of liposome+ cells and mean fluorescence intensity (MFI). However, significant differences are observed in BMDM uptake when represented in terms of number of liposomes, liposome surface area or liposome internal volume. In vivo biodistribution studies in mice show that by creating small (<50 nm) liposomes we can modify the clearance rates of these liposomes from the injection site and increase accumulation to the draining lymphatics.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Manufacturing Methods for Liposome Adjuvants

Y. Perrie, E. Kastner, S. Khadke, C. Roces and P. Stone

A wide range of studies have shown that liposomes can act as suitable adjuvants for a range of vaccine antigens. Properties such as their amphiphilic character and biphasic nature allow them to incorporate antigens within the lipid bilayer, on the ...

Read More


Publication - Abstract

Quantification of the lipid content in liposomal adjuvants for subunit vaccine formulation is of extreme importance, since this concentration impacts both efficacy and stability. In this paper, we outline a high performance liquid chromatography-ev...

Read More


Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.

MENU
菜单
X
X