Strategies for producing clinical and commercial RNA-LNP drug products

S. Gurcan[^], I. Johnston, D. Singh, A. Braun, B. MacDougall, B. Ma, A. Lazic, L. Yee, A. St. Quintin, C. Robin, F. Yuen, P. Harvie, S. Abraham, S. Clarke

[^] presenting authorPrecision Nanosystems ULC, Vancouver, Canada

Booth #40

Contact us at: Precision NanoSystems, Vancouver, BC, Canada info@precision-nano.com

Introduction

- The promise of messenger RNA (mRNA) lipid nanoparticle (LNP) therapies include prophylactic, rare disease, and oncology applications.
- However, encapsulation of mRNA drug substances by lipids is among the most difficult unit operation to bring to commercial-scales.
- In this work, we aim to demonstrate that the NanoAssemblr[®] commercial formulation system and NxGen[™] commercial cartridge 48 L/h simplify this unit operation.

Objectives

POPC: Chol liposomes at a

range of flow rates

prepared with NxGen mixers

Figure 1. NanoAssemblr commercial formulation system (left) and NxGen microfluidic mixing system (right)

Methods and Results

Nanoparticle synthesis and purification:

POPC(1-palmitoyl-2-oleoyl-glycero-3-phosphocholine):Chol liposomes were prepared at a range of flow rates on NxGen mixers. Green fluorescent protein (GFP) plasmid DNA (pDNA) LNPs or self-amplifying mRNA (saRNA)-LNPs were prepared using NanoAssemblr[®] instruments and NxGen[™] mixers. Specific formulation conditions are noted in the tables right and below.

RNA-LNP characterization and *in vitro* **activity:** RNA-LNP size and polydisersity index (PDI) were determined using DLS (Malvern Zetasizer Ultra). The encapsulation efficiency (EE%) of the RNA was determined using Ribogreen[™] reagent.

In vitro and *in vivo* expression and immunogenicity: *In vitro* potency was assessed with a kinase deficient baby hamster kidney cell (BHK 570) cell model. To determine the immunogenicity of the saRNA-LNPs, female BALB/c mice (n=5) were immunized by IM injection on day 0 with LNPs encapsulating 1µg nCoV saRNA and boosted at day 28. IgG levels in serum on day 21 and day 42 were measured by ELISA.

Condition	NanoAssemblr [®] system	NxGen mixer cartridge	Total flow rate [L/h]	Batch volume [mL]	RNA Encapsulated [mg]
1	Ignite+	NxGen	0.72	30	1.1
2	Ignite+	NxGen 500	6.9	30	1.1
3	Ignite+	NxGen 500	12	30	1.1
4	Blaze	NxGen 500	6.9	30	1.1
5	Commercial formulation system	NxGen commercial cartridge 12 L/h [Nxgen 500]	12	100	3.3
6	Commercial formulation system	NxGen commercial cartridge 48 L/h	48	100	3.3
7	Modular commercial formulation skid	NxGen commercial cartridge 48 L/h	48	150	5.0

3. Critical Quality Attributes of saRNA-LNPs Are Consistent Across NanoAssemblr Systems

Figure 4. Physicochemical characterization of saRNA-LNPs prepared using NxGen Technology **A)** Size, PDI, and encapsulation efficiency as a function of instrument system used to prepare the saRNA-LNP. **B)** Size, PDI and encapsulation efficiency as a function of NxGen mixer cartridge.

increased by an order of magnitude

 Table 1. saRNA-LNP formulation conditions

1. NxGen Mixing Architecture Ensures Consistent Particles Across a Wide Range of Flow Rates

Figure 2. Controlled mixing using NxGen technology

Controlled mixing using NxGen technology allows for production of limit-size nanoparticles across a wide range of flow rates. **A)** computational fluid dynamic modeling with water and ethanol. **B)** Dye studies using the NxGen commercial cartridge 48 L/h. **C)** POPC:Chol liposome formation. The size of POPC:Chol liposomes prepared using the NxGen, NxGen 500, and NxGen commercial cartridge 48 L/h at a range of flow rates

2. Consistent LNP Formulation Conditions for >6g IVT Process

Key Formulation Parameters for pDNA-LNPS				
Lipid Composition	Precision NanoSystems Custom Composition Ionizable lipid : Helper 1 : Helper 2 : Stabilizer			
Initial Lipid Concentration	2x nominal concentration			
Genetic Cargo	6.1 kb eGFP pDNA			
N/P	8			
Organic Solvent	Ethanol			
Aqueous Phase	2x nominal pDNA concentration in acidic buffer			
Flow Rate Ratio	3:1 aqueous to organic			
TFF Concentration and Diafiltration	Cytiva Delta cassette 30 kDa, 93 cm ²			
Cryopreservation Buffer	Precision NanoSystems custom			
Sterile Filtration	Cytiva Acrodisc 0.22 µm			

4. Commercial Scale saRNA-LNPs Are Biologically Potent In Vitro and In Vivo

Figure 5. Expression of SARS-CoV-2 antigen and immune response for saRNA-LNPs prepared using NxGen technology **A)** Percentage of cells expressing SARS-CoV-2 spike protein in BHK 570 cells as a function of saRNA dose for each system and mixer condition with 95% confidence intervals in shaded areas. **B)** EC50 values plotted as functions of system. Error bars are 95% confidence intervals. **C)** SARS-CoV-2 specific IgG response in serum from BALB/c mice at day 21 and 42 post-injection for each condition. Error bars are 1 standard deviation. 1X PBS versus instrument comparison p-value for a given time point using post-hoc Tukey test after one-way ANOVA ($P \le .05$: *, $P \le .01$: **, $P \le .001$: ***, $P \le .0001$: ****).

Conclusion

50

ation

- Critical quality attributes of the saRNA-LNPs were maintained across all scales and flow rates for all analytical readouts.
- The NxGen commercial cartridge 48 L/h and NanoAssemblr commercial formulation system provide a scalable solution for production of RNA-LNP drug products under cGMP conditions.

Download

