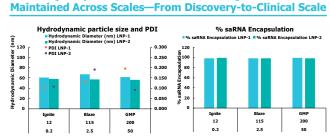
PNI Provides Full Stack Genetic Medicine Product Development

Developing Vaccine in 9 Months from Project Funding

Canadian Strategic Innovation Fund (SIF)

- O Last October PNI received \$18.2 million from Canadian Strategic Innovation Fund (SIF) to develop cost-effective made-in-Canada COVID-19 self-amplifying RNA (saRNA) vaccine
- O PNI also received a contribution of CAD \$25.1 million through SIF to build an RNA Medicine Biomanufacturing Centre with the goal of manufacturing 240 millions vaccine dose/years

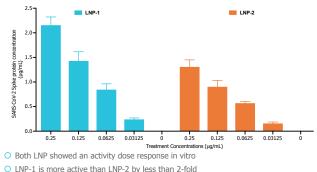

Objective

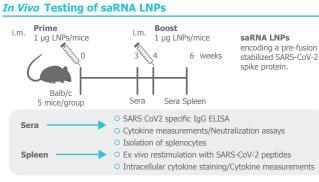
- To scale up SARS-CoV-2 self-amplifying RNA-Lipid nanoparticle using PNI developed ionizable lipid and formulation from 0.2, to 50 mg scale using PNI's Manufacturing Platform (Ignite™, Blaze™, GMP NanoAssemblr®)
- A phase I trial for saRNA Vaccine requires 50 mg scale O To optimize the down-stream processing (TFF/Sterile filtration)
- TFF shear rat
- TFF type, Material, MWCO Processing buffers TFF scalability
- To select a lead saRNA-LNP formulation and define a manufacturing process based on formulation activity, stability, scalability, repeatability and critical process parameters

Simplified Scale-Up of mRNA-LNP Using NxGen™

	Ignite™	Blaze™	GMP	
Mixers	NxGen™, NxGen w/in-line dilution	NxGen 400, NxGen 500	NxGen 500	
Organic Phase	Lipid in Ethanol			
Aqueous Phase	RNA in aqueous			
Total Micromixing Maximum Volume	up to 20mL undiluted	up to 10L undiluted	up to 50L undiluted*	
Flow Rate Ratio [Org : Aq]	3:1			
Total Flow Rate	12 mL/min	115 mL/min	200 mL/min	
In-line Dilution Ratio (Buffer : Micromix volume)	3:1	3:1	3:1	
Downstream Processing	Dialysis Cassette	TFF	TFF	

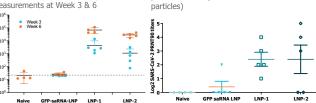
Critical Quality Parameters of the LNP Drug Product is



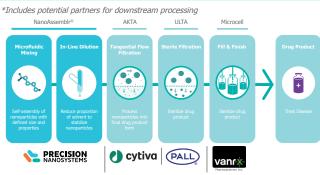

O SARS-CoV-2 self-amplifying RNA-LNP made with PNI proprietary ionizable lipid had similar size (~ 60 nm), polydispersity (~ 0.2) and ecosylation efficiency (>90%) across all scales tested with two different LNP

*The saRNA encoding a pre-fusion stabilized SARS-CoV-2 spike protein was kindly provided Dr Robin Shattock from Imperial College London

In Vitro Activity saRNA LNPs Using Two Novel Lipid Compositions


ELISA quantification of the SARS-CoV-2 spike protein expression in HEK-293 cells after transfection with saRNA LNPs

In Vivo Activity of saRNA LNPs Using Novel Lipid Compositions


SARS-CoV-2 Specific Serum IgG Measurements at Week 3 & 6

pRNT90 Values (SARS-CoV-2 real virus

O Both LNP-1 and LNP-2 efficiently induced SARS CoV2 specific IgG response in mid ○ As observed in vitro LNP-1 showed slightly higher activity as compared to LNP-2. ○ Both LNP-1 and LNP-2 generated neutralizing antibodies against the SARS-CoV-2 virus.

Unit Operations for mRNA-LNP Production

NanoAssemblr GMP System

NanoAssemblr GMP System

.....

Microfluidic based non-turbulent flow, constant pressure and even flow at 200 mL/min. 20 L in 100 min.

- Configurable & modular system that is fit-for-purpose & phase appropriate

 - Continuous flow enables manufacturing scales from 200 ml to >50 L
 - Fully disposable fluid path reduces risk and cost (e.g., reduced cleaning validation)
 - O GMP System fluid path integrated to downstream
 - TFF system enabling a closed syste O Quality documentation meets cGMP requirements
 - Customer support with technology transfer and IQ/OQ of GMP System

in line

dilution

NanoAssemblr GMP

System

TFF concentration step

Buffer exchange with

4-8 vol of storage

buffer

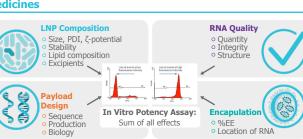
Final concentration

Sterile filtration

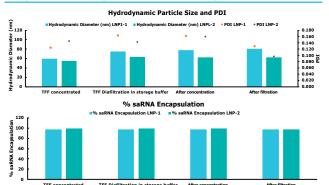
Vialing and cold storage

Down-Stream Processing: Tangential Flow Filtration

Tangential Flow Filtration is used to remove the ethanol from the LNP and exchange the formulation buffer for a relevant storage buffer


- O Multiples factors are taken in consideration when
- Multiples factors are taken in consideration wi developing the down-stream processing step: Type of cartridges hollow fibers vs plate Material of these cartridges PS vs mPES Malexider wright gut off
- Molecular weight cut-off 100–500KD typically used
- Cartridge surface area Shear rate
- Snear rate
 The flow rate in a single of fibers divided by radius of those fibers
 Transmembrane Pressure (TMP)
 The driving force for liquid transport the base the other fiber the sector.
- through the ultrafiltration membrane

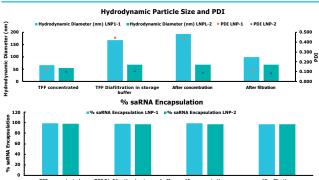
Effect of Shear Rate on TFF Processing Time


TFF steps	4000 sec-1	6000 sec-1	8000 sec-1
TFF concentration step	105 min	40 min	43 min
Diafiltration in buffer #1 (4V)	30 min	15 min	15 min
Diafiltration in Buffer #2 (4V)	50 min	70 min	50 min
Total processing time	185 min	125 min	108 min

O 2.5 mg batch size and 300KD MWCO ○ TMP of 4 PSI was maintained for each conditions

Analytical Methods Are Critical for Developing RNA-LNP Medicines

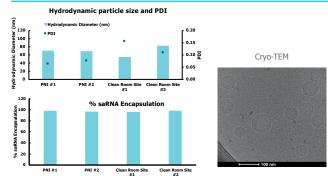
Simplified Scale-Up of mRNA-LNP Using NxGen™



Contact us at:

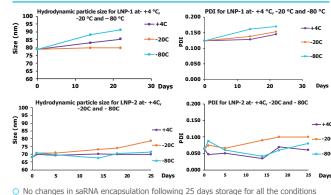
Systems Inc, Vancouver, BC, Canada

• At the 2.5 mg scale LNP-1 showed a slight particle size increase during the TFF process


Process Scalability at the 50 mg Scale

• At the 50 mg scale LNP-1 showed particle size increase during the down-stream

LNP-2 remained size stable during the down stream processing step and was selected as the lead for GLP tox and GMP manufacturing


In Vivo Activity of saRNA LNPs Using Novel Lipid Compositions

O Four successful batches were made at clinical scale at three different sites

O Minor variations in the particle size may be explained by the use a different saRNA lots O Dense core particle observed by Cryo-TEM O Currently being tested in a GLP tox study

LNP-1 vs LNP-2 Pilot Stability

tested

- O After 25 days storage LNP-1 showed a 10 nm particle size growth at -80C and a 5nm
- O LNP-2 is size stable at -80 °C and +4 °C and showed a 10 nm size increase at after 25 days at -20 °C

Conclusion

- Two RNA-vaccine candidate formulations (LNP-1 and LNP-2) were investigated using the PNI Manufacturing Platform (Ignite™, Blaze™, GMP NanoAssemblr[®])
- At small scale (0.2 and 2.5 mg), both LNP-1 and LNP-2 had comparable particle characteristics
- O However, LNP-1 was difficult to scale and showed sub-optimal stability upon storage as compared to LNP-2
- O LNP-2 was selected for further development based on scalability, manufacturability and stability
- Four 50 mg batches of SARS-CoV-2 self-amplifying RNA-LNP-2 were made at 3 different sites showing the robustness of the PNI GMP NanoAssemblr[®] platform
- O LNP-2 is currently being tested in a GLP tox studies to support phase I trial commencing in 2021

NxGen Microfluidic mixer