Microfluidic Manufacture of PLGA Nano- and Microparticle Drug Delivery Vehicles.

This poster is interactve! Download the free "layar" app on your smartphone or tablet and use it to scan this poster. Enriched features are indicated with this

S.M. Garg, A. Thomas, T.J. Leaver, A.W. Wild, S. Clarke, E.C. Ramsay

Precision NanoSystems Inc., Vancouver, BC, Canada

Introduction

logo.

Purpose

- Polymer nano- and microparticles are desirable drug delivery vehicles for numerous indications
- With conventional methods of making particles it is challenging to achieve population uniformity, batch-to-batch reproducibility, and to scale manufacturing
- Demonstrated is a scalable microfluidic process for developing and optimizing both nano- and microparticles composed of biodegradable polymers
- Nanoparticle size was tuned between 70- 200 nm
- Microparticles were tuned between 1 5 µm
- Total Flow Rate, Flow Rate Ratio, and

General Method

Microfluidic Mixing: Homogeneous Solvent/Antisolvent Precipitation

NanoAssemblr™ Systems

Scalable Platform for Manufacturing Nanoparticles

Video: NanoAssemblr Benchtop Demo Info: Detailed Materials & Methods

Nano- or Microparticles

Nano- or microparticles were obtained when using different organic solvents and different concentrations of the stabilizer PVA.

	Microparticles	Nanoparticles
Solvent	Ethy Acetate	Acetonitrile
	(semi-miscible)	(miscible)
PVA Conc.	0.1%	2%
	~5 µm	~ 100 nm
PVA • (stabilizer)		
PLGA o ———		

• PDI

⊢1.0

0.8

- 0.6

0.4

0.2

20

Optimizing Nanoparticle Size

Increasing the total flow rate decreases nanoparticle size

A 5 mg/mL PLGA

B 20 mg/mL PLGA

Data points are the mean \pm SD for three independent size/PDI measurements by dynamic light scattering on three independent samples (n = 3). Horizontal bar indicates diameters were not significantly different (P>0.05) by one-way ANOVA followed by Tukey's post-hoc test.

Polymer	PLGA (50:50) ester-term. 45-55 kDa
Aqueous Phase	2% w/v PVA in deionized water
Organic Phase	A) 5 mg/mL in acetonitrileB) 20 mg/mL in acetonitrile
Total Flow Rate	As labeled
Flow Rate Ratio	1:1 (Aq:Or)

Increasing the aqueous:organic flow rate ratio leads to an increase in nanoparticle size

Data points are the mean \pm SD (n = 3). Horizontal bar indicates diameters were not significantly different (P>0.05) by one-way ANOVA followed by Tukey's post-hoc test.

Optimizing Microparticle Size

Increasing the total flow rate decreases microparticle size A 20 mg/mL PLGA **B 50 mg/mL PLGA** Diameter (Z-Average, µm) • PDI 1.0 5 -0.8 4 0.6 3 0.4 2 0.2 0.0 20 12 16 8 8 TFR (mL/min)

Using semi-miscible ethyl acetate instead of acetonitrile plays a large role in microparticle formation.

Data points are the mean \pm SD for three independent size/PDI measurements by dynamic light scattering on three independent samples (n = 3). Horizontal bar indicates diameters were not significantly different (P>0.05) by one-way ANOVA followed by Tukey's post-hoc test.

Diame	eter (Z-Ave	rage, µm)		
5 -				
4 –				
3 -				
2 -				_
1 -	T	т	т	

12

16

TFR (mL/min)

Polymer	PLGA (50:50) ester-term. 70-100 kDa
Aqueous Phase	0.1% w/v PVA in deionized water
Organic Phase	A) 20 mg/mL in ethyl acetateB) 50 mg/mL in ethyl acetate
Total Flow Rate	As labeled
Flow Rate Ratio	2:1 (Aq:Or)

Increasing the aqueous:organic flow rate ratio does not affect microparticle size

• PDI

1.0

0.8

Diameter (Z-Average, µm)	
5 -	n.s.	
4 -		

Data points are the mean \pm SD (n = 3). Horizontal bar indicates diameters were not significantly different (P>0.05) by one-way ANOVA followed by Tukey's post-hoc test.

Polymer Mol. Wt.	PLGA (50:50) ester-term. 45-55 kDa
Aqueous Phase	2% w/v PVA in deionized water
Organic Phase	20 mg/mL Polymer in acetonitrile
Total Flow Rate	8 mL/min
Flow Rate Ratio	As labeled (Aq:Or)

Increasing the PLGA concentration leads to an increase in nanoparticle size

Data points are the mean \pm SD (n = 3). Horizontal bar indicates diameters were not significantly different (P>0.05) by one-way ANOVA followed by Tukey's post-hoc test.

Polymer Mol. Wt.	PLGA (50:50) ester-term. 45-55 kDa
Aqueous Phase	2% w/v PVA in deionized water
Organic Phase	Polymer in acetonitrile
Total Flow Rate	8 mL/min
Flow Rate Ratio	1:1 (Aq:Or)

PLGA microparticles show a spherical morphology with sizes between 60-100 nm

Scanning electron micrographs of PLGA nanoparticles prepared using the NanoAssemblr Benchtop. For SEM, samples were washed 3x by centrifugation and resuspention in DI water, dispersed on a Si chip, allowed to dry, and sputter coated with 5 nm Iridium. Scale bar = 300 nm

Increasing the PLGA concentration leads to an increase in microparticle size

Data points are the mean \pm SD (n = 3). Horizontal bar indicates diameters were not significantly different (P>0.05) by unparied Student's T-test.

Polymer Mol. Wt.	PLGA (50:50) ester-term. 70-100 kDa
Aqueous Phase	0.1% w/v PVA in deionized water
Organic Phase	Polymer in ethyl acetate
Total Flow Rate	8 mL/min
Flow Rate Ratio	2:1 (Aq:Or)

PLGA microparticles show a spherical morphology with sizes between 1.2 - 1.9 µm

Scanning electron micrographs of PLGA microparticles prepared using the NanoAssemblr Benchtop. For SEM, samples were washed 3x by centrifugation and resuspention in DI water, dispersed on a Si chip, allowed to dry, and sputter coated with 5 nm Iridium. Scale bar = 5μm

Polymer Mol. Wt.	PLGA (50:50) ester-term. 45-55 kDa
Aqueous Phase	2% w/v PVA in deionized water
Organic Phase	Polymer in acetonitrile
Total Flow Rate	8 mL/min
Flow Rate Ratio	1:1

Polymer Mol. Wt.	PLGA (50:50) ester-term. 70-100 kDa
Aqueous Phase	0.1% w/v PVA in DI water
Organic Phase	50mg/mL PLGA in ethyl acetate
Total Flow Rate	20 mL/min
Flow Rate Ratio	2:1

Conclusions

- Microfluidics offers a reproducible, tunable, and scalable method for developing and manufacturing both nanoand microparticle drug delivery systems
- Choice of solvent and stabilizer concentration influence whether nano- or microparticles form
- Generally, using a semi-miscible solvent slowed kinetics of particle precipitation, allowing larger particles to be formed
- Higher polymer concentrations led to larger particles
- Higher concentrations of stabilizer allows formation of particles with larger surface area-to-volume ratios (ie smaller particles)

Links: Webinars, Application Notes, and more resources

Create Transformative Medicines[™]

