# Microfluidics-based Manufacture of PEG-b-PLGA Block Copolymer Nanoparticles for the Delivery of Small Molecule Therapeutics

S.M. Garg, M. Parmar, A. Thomas, E. Ouellet, S. Ip, T.J. Leaver, A.W. Wild, R.J. Taylor, E.C. Ramsay

# **Purpose and Objectives**

- Methods of production for block copolymer nanoparticle as drug delivery vehicles pose numerous challenges:
  - Maintaining consistent nanoparticle quality
  - Tuning size depending on the application
  - Optimization for scale-up
  - Reproducibility
- Automated microfluidics-based production eliminates user variability and is capable of reproducible, and scalable manufacture of nanoparticles
- We describe manufacture of PEG-b-PLGA nanoparticles using the NanoAssemblr<sup>™</sup> Benchtop microfluidic instrument for optimization of size and physical encapsulation of a hydrophobic model drug coumarin-6.

## Methods





# **Tuning Size by NanoAssemblr Parameters**

#### A Flow Rate Ratio (FRR) has subtle effect on size, mostly at low FRR.



#### **B** Micelle size decreased asymptotically with increasing Total Flow Rate (TFR)



• FRR controls the magnitude of solvent polarity shift upon mixing and TFR is proportional to mixing speed

### **Detailed information**

| Polymer               | PEG <sub>5k</sub> -PLGA <sub>20k</sub> |
|-----------------------|----------------------------------------|
| Aqueous Phase         | Deionized water                        |
| Organic Phase         | 20 mg/mL polymer in acetone            |
| TFR                   | A) 8 mL/min<br>B) As indicated         |
| FRR (aqueous:organic) | A) As indicated<br>B) 3:1              |
| Solvent Removal       | Dialysis                               |

Dialysis did not affect particle size. Hydrodynamic size and particle size distribution (expressed as polydispersity index, PDI) were determined by dynamic light scattering. PEG-PLGA particles were formulated at different FRR as indicated and dialyzed against water for 12h. Samples were formulated in triplicate and measurements represent the mean and error bars are SEM

\_\_\_\_\_

Polyn \_\_\_\_\_ Aqueo \_\_\_\_\_ Organ

Solver \_\_\_\_\_



# **Tuning Size by Polymer Properties**

### PEG-PLGA micelle size increases with increasing MW of hydrophobic PLGA block (PEG MW held constant)



### **B** Particle size can be equalized despite differnt PLGA MWs by tuning TFR



• Size is affects biodistribution and drug release. Hence to compare polymer micelles of different composition, it's important their sizes be comparable.

### **Detailed information**

| Polymer               | PEG <sub>5k</sub> -PLGA <sub>x</sub> ; x = 10 - 95 kDa |
|-----------------------|--------------------------------------------------------|
| Aqueous Phase         | Deionized water                                        |
| Organic Phase         | 20 mg/mL polymer in acetone                            |
| TFR                   | A) 8 mL/min<br>B) As indicated                         |
| FRR (aqueous:organic) | 3:1                                                    |
| Solvent Removal       | Dialysis                                               |
|                       |                                                        |

Hydrodynamic size and particle size distribution (expressed as polydispersity index, PDI) were determined by dynamic light scattering. PEG-PLGA particles were formulated n triplicate and measurements represent the mean and error bars are SEM. Where indicated, samples were dialyzed against water for 12h

# Hydrophobic Small Molecule Drug Loading



Hydrodynamic distribution (e) polydispersity determined by scattering. All formulated in against water represent the SEM. Encapsul measured by co and measuring supernatant by spectroscopy ag

# Conclusions

Polymer composition affects nanoparticle size, but instrument parameters can be used to make micelles of different composition the same size, which is essential to compare performance of different formulations.

NanoAssemblr formulations were smaller and had greater encapsulation efficiency than conventional beaker precipitation.

Precision NanoSystems Inc., Vancouver, BC, Canada

Encapsulation efficiency: NanoAssemblr technology > beaker precipitation



### **Detailed information**

| size and particle size    |
|---------------------------|
| xpressed as               |
| index, PDI) were          |
| dynamic light             |
| samples were              |
| triplicate and dialyzed   |
| for 12h. Measurements     |
| mean and error bars are   |
| ation Efficiency was      |
| entrifuging the particles |
| ) coumarin 6 in the       |
| y fluorescence            |
| against a standard curve. |

| Polymer               | PEG 5k-PLGA 20k                        |
|-----------------------|----------------------------------------|
| Polymer:Coumarin 6    | 1:400                                  |
| Organic Phase         | 20 mg/mL polymer in acetone            |
| Aqueous Phase         | Deionized water                        |
| TFR                   | Benchtop: 8 mL/min<br>Beaker: Dropwise |
| FRR (aqueous:organic) | 3:1                                    |
| Solvent Removal       | Dialysis                               |
|                       |                                        |



Create Transformative Medicines<sup>™</sup>