GenVoy-ILM™
Non-viral LNP Delivery for RNA

For preclinical development of:
- gene therapy
- cell therapy
- vaccines

With applications in oncology, rare diseases and infectious diseases.

GenVoy-ILM is an exclusive ionizable lipid mix for rapid, easy production of RNA-Lipid Nanoparticles using the NanoAssembler® platform. It can be used to:

Deliver siRNA for sustained gene knockdown

Deliver mRNA for gene expression

A single injection of GenVoy-ILM Factor VII siRNA-LNP was administered to mice via the tail vein at the RNA doses indicated and plasma levels of Factor VII protein were measured up to 21 days post-administration.

A single injection of GenVoy-ILM Luciferase mRNA-LNP was administered to mice via the tail vein at an RNA dose of 1 mg/mL. Luciferase expression was measured 6-hours post-mRNA-LNP administration.

Learn More: precisionnanosystems.com/genvoy-ilm
Both The Chemistry And The Process Affect The Outcome

Your RNA + GenVoy-ILM™ + NanoAssemblr Process = Homogeneous LNPs

LNPs made with the NanoAssemblr platform exhibit a unique homogeneous core structure with exceptionally consistent size within and between batches, which has been shown to be more potent than particles made by other methods. For more details, visit:

precisionnanosystems.com/lnp-performance

Use GenVoy-ILM for:
- Gene silencing
- Gene expression
- Gene editing
- Gene modulation

Use GenVoy-ILM to encapsulate and deliver RNA:
- siRNA
- miRNA
- tRNA
- gRNA
- mRNA

GenVoy-ILM contains an ionizable cationic lipid, which at low pH mediates efficient encapsulation of the anionic RNA in a lipid core

The RNA-lipid core is surrounded by helper lipids, cholesterol and stabilizers to form the RNA-LNP

Once formed, RNA-LNP are neutral at physiological pH which eliminates a main source of toxicity present in other materials used in RNA delivery systems

RNA-LNP mimic low density lipoproteins (LDL) and are then taken up by most cell types through receptor-mediated endocytosis

Once in the endosome, ionizable lipids in RNA-LNP respond to low pH and become cationic

The cationic lipids in the RNA-LNP interact with anionic lipids in the endosome to disrupt the endosomal membrane and release the RNA into the cytoplasm

Learn More: precisionnanosystems.com/genvoy-ilm

Ordering Information

<table>
<thead>
<tr>
<th>Product</th>
<th>Quantity</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenVoy-ILM</td>
<td>2 mL</td>
<td>NWW0041</td>
</tr>
<tr>
<td>GenVoy-ILM</td>
<td>5 mL</td>
<td>NWW0042</td>
</tr>
<tr>
<td>GenVoy-ILM w/ dye (644/665 nm ex/em)</td>
<td>2 mL</td>
<td>NWW0039</td>
</tr>
<tr>
<td>GenVoy-ILM w/ dye (644/665 nm ex/em)</td>
<td>5 mL</td>
<td>NWW0040</td>
</tr>
<tr>
<td>PNI Formulation Buffer</td>
<td>20 mL</td>
<td>NWW0043</td>
</tr>
<tr>
<td>NanoAssemblr Benchtop Instrument with 50 Cartridges</td>
<td>Instrument Bundle</td>
<td>NIT0055</td>
</tr>
</tbody>
</table>

* Instrument and cartridges also available separately

Document ID: genvoy-ilm-BR-0319

Copyright © Precision NanoSystems Inc. 2019 All rights reserved. Create Transformative Medicines™ is a trademark and NanoAssemblr® is a registered trademark of of Precision NanoSystems Inc. For research use only.