Scientist Holding Small Formulation
Polymeric Nanoparticles

Polymeric NanoparticlePolymer-based nanoparticles can improve the efficacy, solubility, toxicity, bioavailability and pharmacokinetic profile of a drug molecule.


Numerous applications are being developed, including:


• Biodistribution of chemotherapeutic agents in tumors to reduce off-target toxicity and widen the therapeutic window
• Encapsulation and delivery of biomolecules for genetic medicine, gene-editing, and immunotherapy
• Encapsulation and co-delivery of multiple APIs and/or image contrast agents for combination drug therapy or theranostics

Overcoming Key Challenges in Advancing Polymer Nanoparticle Formulations

Challenges with Conventional Production Solutions with the NanoAssemblr® Platform
The formulation process has significant batch-to-batch variabilityorangeRightArrowReproducible polymer nanoparticle manufacturing process
Maintaining precise control over the particle size is difficultorangeRightArrowControl particle size through instrument parameters
Loading the nanoparticles is inefficientorangeRightArrowHigh drug loading efficiency in a one-step formulation process
Production is time consuming and labor-intensiveorangeRightArrowEnabling rapid, effortless polymer nanoparticle production and optimization
The manufacturing process is difficult to scale-uporangeRightArrowA seamless path to scaling up production

Key Benefits

Highly Reproducible Polymer Nanoparticle Manufacturing

Polymer ReproducibilityPLGA nanoparticles smaller than 100nm in size, produced in three separate batches by three independent operators, demonstrating interoperator and batch-to-batch consistency.

Control Particle Size through Convenient Instrument Parameters

PEG-PLGA Polymer Size Control
The size of PEG-PLGA block-copolymer micelles was tuned using the Total Flow Rate (TFR). Dial in parameters to achieve a specific size with the same polymer.

High Drug Loading Efficiency in a One-Step Formulation Process

Polymer Encapsulation Efficiency
PLGA nanoparticles formed in the presence of model drug Coumarin6 exhibit high encapsulation efficiency.

A Seamless Path to Scaling Up Production

PLGA Polymer Scalability
Formulation parameters optimized on the Benchtop (up to 15 mL) were transferred unchanged to the Blaze (up to 1000 mL) and the same size and PDI were achieved for PLGA-NPs. Samples can also be concentrated as desired using centrifugal filtration and tangential flow filtration.

How It Works

Rapid and Controlled Mixing

Polymers in a solvent are mixed with an aqueous phase in the NanoAssemblr® microfluidic cartridge where rapid, homogeneous mixing ensures particles are formed under consistent conditions. Computer controlled independent injection of both liquids allows mixing speed and mixing ratio to be easily dialed-in to systematically optimize particle formation parameters.

Get Started

To learn how Precision NanoSystems accelerates nanomedicine development from an idea to clinical applications, contact our Technical Sales Team.

Get in Touch

Polymer Nanoparticle Resources

Publication - Abstract

February 27, 2019

Cell Chemical Biology

Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model

Y. Zhang, H. Tan, J.D. Daniels, F. Zandkarimi, H. Liu, L.M. Borwn, K. Uchida, O.A. O'Connor. B.R. Stockwell

Read More 阅读更多

Application Note

December 22, 2018

PLGA Microspheres Formulation and size-tuning using the NanoAssemblr® Benchtop

Read More 阅读更多 PDF

Publication - Abstract

December 05, 2018

Journal of Drug Delivery Science and Technology

Microfluidic manufacturing improves polydispersity of multicomponent polymeric nanoparticles

K. Abstiens, A,M. Goepferich

Read More 阅读更多


August 01, 2018

Microfluidics-based Manufacture of PEG-b-PLGA Block Copolymer Nanoparticles for the Delivery of Small Molecule Therapeutics

Read More 阅读更多 PDF

Publication - Abstract

July 04, 2018

Nature communications

Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers

M Yu, L Xu, F Tian, Q Su, N Zheng, Y Yang

Read More 阅读更多

Publication - Abstract

June 01, 2018

Biological and Pharmaceutical Bulletin

The Use of an Efficient Microfluidic Mixing System for Generating Stabilized Polymeric Nanoparticles for Controlled Drug Release

Y Morikawa, T Tagami, A Hoshikawa, T Ozeki

Read More 阅读更多
Resource Center 资源中心

Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.