Effects of Local Structural Transformation of Lipid-Like Compounds on Delivery of Messenger RNA


Authors: B. Li, X. Luo, B. Deng, J.B. Giancola, D.W. McComb, T.D. Schmittgen and Y. Dong

Journal: Scientific Reports

DOI: 10.1038/srep22137

Publication - Abstract

February 26, 2016

Abstract:

Lipid-like nanoparticles (LLNs) have shown great potential for RNA delivery. Lipid-like compounds are key components in LLNs. In this study, we investigated the effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Our results showed that position change of functional groups on lipid-like compounds can dramatically improve delivery efficiency. We then optimized formulation ratios of TNT-b10 LLNs, a lead material, increasing delivery efficiency over 2-fold. More importantly, pegylated TNT-b10 LLNs is stable for over four weeks and is over 10-fold more efficient than that of its counterpart TNT-a10 LLNs. Additionally, the optimal formulation O-TNT-b10 LLNs is capable of delivering mRNA encoding luciferase in vivo. These results provide useful insights into the design of next generation LLNs for mRNA delivery.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Despite the wide therapeutic potential of RNA interference (RNAi), clinical progress has been slow with only a few examples of successful translation. Efficient knockdown of hepatic transthyretin (87%) in patients with transthyretin amyloidosis las...

Read More


Publication - Abstract

Most current Ebola virus (EBOV) vaccine candidates are based on viral vectors, some of which cause side effects or require complex manufacturing. Modified mRNA vaccines are easily produced, safe, and are highly immunogenic. We developed 2 mRNA vaccines based on the EBOV envelope ...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.