Metallosomes for Biomedical Applications by Mixing Molybdenum Carbonyl Metallosurfactants and Phospholipids


Authors: M. Marín-García, N. Benseny-Cases, M. Camacho, Y. Perrie, J. Suades and R. Barnadas-Rodríguez

Journal: Dalton Transactions

DOI: 10.1039/C8DT01584H

Publication - Abstract

June 19, 2019

Abstract

New supramolecular systems have been prepared by mixing molybdenum organometallic metallosurfactants M(CO)5L and M(CO)4L2 {L = Ph2P(CH2)6SO3Na} with the phospholipid phosphatidylcholine. The analysis of the resulting supramolecular structures using dynamic light scattering and cryo-transmission electron microscopy has shown the formation of different aggregates depending on the metallosurfactant/phospholipid ratio, as well as a significantly different behaviour between the two studied metallosurfactants. Mixed vesicles, with properties very similar to liposomes, can be obtained with both compounds, and are called metallosomes. The formation of the mixed aggregates has also been studied by microfluidics using MeOH and EtOH as organic solvents, and it has been observed that the size of the aggregates is strongly dependent on the organic solvent used. In order to analyse the viability of these mixed systems as CO Releasing Molecules (CORMs) for biomedical applications, the CO release was studied by FT-IR spectroscopy, showing that they behave as photo-CORMs with visible and ultraviolet light. Toxicity studies of the different mixed aggregate systems have shown that metallosomes exhibit a very low toxicity, similar to liposomes that do not contain metallosurfactants, which is well below the results observed for pure metallosurfactants. Micro-FTIR microscopy using synchrotron radiation has shown the presence of metallosurfactants in cells. The results of this study show the influence of the length of the hydrocarbon chain on the properties of these mixed systems, compared with previously reported data.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

A pH-sensitive molecular switch able to change its conformation upon protonation at endosomal pH values is embedded into the structure of cationic lipidoid materials, thus conferring endosomal escape properties. Involvement of the conformational switch in the endosomal escape pro...
Read More


Publication - Abstract

Classified as a Biopharmaceutical Classification System (BCS) class IV drug, amphotericin B (AmB) has low aqueous solubility and low permeability leading to low oral bioavailability. To improve these limitations, this study investigated the potential of AmB-loaded polymeric micel...
Read More


Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.