Lipid Nanoparticles of Type-A CpG D35 Suppress Tumor Growth by Changing Tumor Immune-microenvironment and Activate CD8 T Cells in Mice


Authors: L. Munakata, Y. Tanimoto, A. Osa, J. Meng, Y. Haseda, Y. Naito, H. Machiyama, A. Kumanogoh, D. Omata, K. Maruyama, Y. Yoshioka, Y. Okada, S. Koyama, R. Suzuki, and T. Aoshi

Journal: Journal of Controlled Release

DOI: 10.1016/j.jconrel.2019.09.011

Publication - Abstract

November 30, 2019

Abstract


Type-A CpG oligodeoxynucleotides (ODNs), which have a natural phosphodiester backbone, is one of the highest IFN-α inducer from plasmacytoid dendritic cells (pDC) via Toll-like receptor 9 (TLR9)-dependent signaling. However, the in vivo application of Type-A CpG has been limited because the rapid degradation in vivo results in relatively weak biological effect compared to other Type-B, -C, and -P CpG ODNs, which have nuclease-resistant phosphorothioate backbones. To overcome this limitation, we developed lipid nanoparticles formulation containing a Type-A CpG ODN, D35 (D35LNP). When tested in a mouse tumor model, intratumoral and intravenous D35LNP administration significantly suppressed tumor growth in a CD8 T cell-dependent manner, whereas original D35 showed no efficacy. Tumor suppression was associated with Th1-related gene induction and activation of CD8 T cells in the tumor. The combination of D35LNP and an anti-PD-1 antibody increased the therapeutic efficacy. Importantly, the therapeutic schedule and dose of intravenous D35LNP did not induce apparent liver toxicity. These results suggested that D35LNP is a safe and effective immunostimulatory drug formulation for cancer immunotherapy.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Identifying and Targeting Angiogenesis-related microRNAs in Ovarian Cancer

X. Chen, L.S. Mangala, L. Mooberry, E. Bayraktar, S.K. Dasari, S. Ma, C. Ivan, K.A. Court, C. Rodriguez-Aguayo, R. Bayraktar, S. Raut, N. Sabnis, X. Kong, X. yang, G. Lopez-Berestein, A.G. Lacko, and A. K. Sood

Current anti-angiogenic therapy for cancer is based mainly on inhibition of the vascular endothelial growth factor pathway. However, due to the transient and only modest benefit from such therapy, additional approaches are needed. Deregulation of microRNAs (miRNAs) has been demon...
Read More


Publication - Abstract

Microfluidic-assisted Preparation of RGD-decorated Nanoparticles: Exploring Integrin-facilitated Uptake in Cancer Cell Lines

J.M. Rios De La Rosa, A. Spadea, R. Donno, E. Lallana, Y. Lu, S. Puri, P. Caswell, M. J. Lawrence, M. Ashford and N. Tirelli

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.