Designing Liposomal Adjuvants for the Next Generation of Vaccines


Authors: Y. Perrie, F. Crofts, A. Devitt, H. Griffiths, E. Kastner and V. Nadella

Journal: Advanced Drug Delivery Reviews

DOI: 10.1016/j.addr.2015.11.005

Publication - Abstract

April 01, 2016

Abstract:

Liposomes not only offer the ability to enhance drug delivery, but can effectively act as vaccine delivery systems and adjuvants. Their flexibility in size, charge, bilayer rigidity and composition allow for targeted antigen delivery via a range of administration routes. In the development ofliposomal adjuvants, the type of immune response promoted has been linked to their physico-chemical characteristics, with the size and charge of the liposomal particles impacting on liposome biodistribution, exposure in the lymph nodes and recruitment of the innate immune system. The addition of immunostimulatory agents can further potentiate their immunogenic properties. Here, we outline the attributes that should be considered in the design and manufacture of liposomal adjuvants for the delivery of sub-unit and nucleic acid based vaccines.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Using Microfluidics for Scalable Manufacturing of Nanomedicines from Bench to GMP: A Case Study Using Protein-loaded Liposomes

C. Webb, N. Forbes, C.B. Roces, G. Anderluzzi, G. Lou, S. Abraham, L. Ingalls, K. Marshall, T.J. Leaver, J.A. Watts, J.W. Aylott, and Y. Perrie

Nanomedicines are well recognised for their ability to improve therapeutic outcomes. Yet, due to their complexity, nanomedicines are challenging and costly to produce using traditional manufacturing methods. For nanomedicines to be widely exploited, new manufacturing technologies...
Read More


Publication - Abstract

The Biomolecular Corona of Gold Nanoparticles in a Controlled Microfluidic Environment

L. Digiacomo, S. Palchetti, F. Giulimondi, D. Pozzi, R.Z. Chiozzi, A.L. Capriotti, A. Laganà, and G. Caracciolo

Nanoparticles (NPs) exposed to biological media are coated by proteins and other biomolecules forming a biomolecular corona (BC) on the particle surface. Recent studies have shown that shear stress as that created by laminar fluid flow generates more complex coronas with systemat...
Read More


Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.