Design and Development of Biomimetic Nanovesicles Using a Microfluidic Approach


Authors: R. Molinaro, M. Evangelopoulos, J. Hoffman, C. Corbo, F. Taraballi, J. Martinez, Kelly. Hartman, D. Cosco, G. Costa, I. Romeo, M. Sherman, D. Paolino ,S. Alcaro and E. Tasciotti

Journal: Advanced Material

DOI: 10.1002/adma.201702749

Publication - Abstract

March 07, 2018

Abstract

The advancement of nanotechnology toward more sophisticated bioinspired approaches has highlighted the gap between the advantages of biomimetic and biohybrid platforms and the availability of manufacturing processes to scale up their production. Though the advantages of transferring biological features from cells to synthetic nanoparticles for drug delivery purposes have recently been reported, a standardizable, batch‐to‐batch consistent, scalable, and high‐throughput assembly method is required to further develop these platforms. Microfluidics has offered a robust tool for the controlled synthesis of nanoparticles in a versatile and reproducible approach. In this study, the incorporation of membrane proteins within the bilayer of biomimetic nanovesicles (leukosomes) using a microfluidic‐based platform is demonstrated. The physical, pharmaceutical, and biological properties of microfluidic‐formulated leukosomes (called NA‐Leuko) are characterized. NA‐Leuko show extended shelf life and retention of the biological functions of donor cells (i.e., macrophage avoidance and targeting of inflamed vasculature). The NA approach represents a universal, versatile, robust, and scalable tool, which is extensively used for the assembly of lipid nanoparticles and adapted here for the manufacturing of biomimetic nanovesicles.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

The ability to control chemical functionality is an exciting feature of modern polymer science that enables precise design of drug delivery systems. Ring-opening polymerization of functional monomers has emerged as a versatile method to prepare clinically translatable degradable ...
Read More


Publication - Summary

Microfluidics based Manufacture of Liposomes Simultaneously Entrapping Hydrophilic and Lipophilic Drugs

S. Joshi, M.T. Hussain, C.B. Roces, G. Anderluzzi, E. Kastner, S. Salmaso, D.J. Kirby and Y. Perrie

Liposomes are lipid-based supramolecular assemblies that can be engineered into efficacious drug carriers. Typically described as bilayer systems with an aqueous core, liposomes can increase the therapeutic index of a given drug molecule by decreas...

Read More


Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.