Microfluidic Assembly of Liposomes with Tunable Size and Coloading Capabilities


Authors: JR Hoffman, E Tasciotti, R Molinaro

Journal: Multiple Myeloma

DOI: 10.1007/978-1-4939-7865-6_15

Publication - Abstract

May 25, 2018

Liposomes used for the delivery of pharmaceuticals have difficulties scaling up and reaching clinical translation as they suffer from batch-to-batch variability. Here, we describe a microfluidic approach for creating reproducible, homogenous nanoparticles with tunable characteristics. These nanoparticles of sizes ranging from 30 to 500 nm are rapidly self-assembled by controlling the flow rates of ethanol and aqueous streams. This method of microfluidic assembly allows for the efficient encapsulation of both hydrophobic and hydrophilic drugs in the lipid bilayer and particle core, respectively, either separately or in combination.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Blog Posts
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Lipid nanoparticles (LNPs) containing short interfering RNA (LNP-siRNA) and optimized ionizable cationic lipids are now clinically validated systems for silencing disease-causing genes in hepatocytes following intravenous administration. However, t...

Read More


Publication - Abstract

Naturally-occurring Cholesterol Analogues in Lipid Nanoparticles Induce Polymorphic Shape and Enhance Intracellular Delivery of mRNA

S. Patel, N. Ashwanikumar, E. Robinson, Y. Xia, C. Mihai, J.P. Griffith III, S. Hou, A.A. Esposito, T. Ketova, K. Welsher, J.L Joyal, Ö. Almarsson and G. Sahay

Endosomal sequestration of lipid-based nanoparticles (LNPs) remains a formidable barrier to delivery. Herein, structure-activity analysis of cholesterol analogues reveals that incorporation of C-24 alkyl phytosterols into LNPs (eLNPs) enhances gene transfection and the length of ...
Read More


Stay Informed

Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.

MENU
菜单
X
X